Катализатор для очистки газа от оксидов азота и углерода
Изобретение относится к катализаторам очистки газовых выбросов от оксидов азота и оксида углерода (II). Описывается катализатор для очистки газа от оксидов азота и оксида углерода (II), содержащий активную массу, нанесенную на подложку на основе хромникелевого пористого материала. При этом в качестве пористого материала он содержит ФНС-5, а активная масса содержит А1, Ni, Cu при следующем соотношении компонентов, вес.%: алюминий - 10,0: медь - 0,5 - 1,5; никель - 0,5 - 1,5; ФНС-5 - остальное. Технический результат - повышение степени очистки целевого продукта за счет использования нового катализатора. 1 табл.
Изобретение относится к каталитической химии и может быть использовано в процессах очистки газов ТЭС и выхлопных газов автотранспорта от оксидов азота и оксида углерода (II).
Известен катализатор восстановления оксидов азота углеводородами в окислительной атмосфере, представляющий собой композицию MeO-ZrO2, где Me-Са, Sr, Y, Се или Al2O3-SrO-ZrO2 [см. Патент России N 2043146, кл. B 01 J 23/02, 23/10, B 01 D 53/94, 1992]. Основным недостаткоми данного катализатора является наличие в продуктах превращения оксидов азота и углеводородов достаточно большого количества оксида углерода (II), являющегося токсичным веществом (4 класс опасности) и высокая температура процесса (500-710oC). Кроме того, степень превращения NOx при 500oC составляет лишь 31%. Известен катализатор Cu/цеолит, полученный многократной пропиткой носителя (цеолита) раствором азотнокислой меди, сушкой и прокаливанием при 600oC. Недостатком известного катализатора является невысокая степень очистки от оксидов азота [см. Патент ФРГ N 3642018, кл. B 01 D 53/36, 1987]. Известен катализатор, представляющий собой сплав платины с родием или палладием, покрывающий однородным слоем поверхность керамических элементов, имеющих форму сот [см. Экологические проблемы на транспорте. Экспресс-информация. М.: ВИНИТИ. 1993. N29]. Однако данный катализатор является дорогостоящим. Известен также катализатор для очистки газа от оксидов азота, представляющий собой шпинель, содержащую оксид меди и оксид железа при молярном соотношении оксида меди к оксиду железа 1:2 -1:20 [см. Авторское свидетельство СССР N564877, кл B 01 J 23/72, B 01 J 23/74// С 01 В 21/20, 1977]. Однако он позволяет очищать газы только от оксидов азота. Наиболее близким к предлагаемому решению является катализатор (прототип) на основе никель-хромового пористого материала, содержащий 3-5 мас.% хрома [см. Анциферов В. Н., Калашникова М.Ю., Макаров А.М., Порозова С.Е., Филимонова И.В. Блочные катализаторы дожигания углеводородов и монооксида углерода на основе высокопористых ячеистых катализаторов. Журн. прикладной химии. 1997. Т.70. вып.1. C.111-114]. Данный катализатор проявляет активность в реакции кислородной конверсии метана и в процессе очистки отходящих газов от монооксида углерода. Недостатком прототипа является отсутствие данных о его активности в процессе комплексной очистки газовых выбросов от NOx и CO. Задача настоящего изобретения заключается в создании катализатора, позволяющего достичь высокой степени очистки кислородсодержащих газов от оксидов азота и оксида углерода (II). Поставленная задача решается тем, что катализатор для очистки газа от оксидов азота и монооксида углерода на основе хромникелевого пористого материала с нанесенной на него активной массой, в качестве пористого материала содержит ФНС-5, а активная масса имеет следующий состав, вес.%: Алюминий - 10,0 Медь - 0,5-1,5 Никель - 0,5-1,5 ФНС-5 - Остальное Пористый материал ФНС-5 (ТУ 14-1-1400-75) представляет собой пластину толщиной 0,14-0,20 мм, обладающую пористостью 32-37%, изготовленную методом прокатки порошка нержавеющей стали марки Х18Н15-2. Активная масса составляет 11-13 вес.%. Предложенный катализатор обладает удельной поверхностью (Sуд) - 3 м2/г, теплопроводностью - 2,4 Вт/м



в) пропитка 100 г алитированной подложки в 100 мл раствора уксуснокислой меди, содержащего 10 г Cu (COOCH3)2

г) пропитка 100 г полученного катализатора в 100 мл раствора азотнокислого никеля, содержащего 10 г Ni(NO3)2

д) восстановительный отжиг при температуре 350oC в течение 1 часа в токе водорода. Полученный катализатор содержит, вес.%: алюминий - 10, медь - 1,0, никель - 1,0, ФНС-5 - остальное. Каталитическая активность полученной системы приведена в таблице. Пример 2. Аналогичен примеру 1. Отличие состоит в том, что пропитку 100 г алитированной подложки проводят в 100 мл раствора, содержащего 5 г уксуснокислой меди. Полученный катализатор имеет состав, вес.%: алюминий - 10,0, медь - 0,5, никель - 1,0, ФНС-5 - остальное. Каталитическая активность полученной системы приведена в таблице. Пример 3. Аналогичен примеру 1. Отличие состоит в том, что пропитку 100 г алитированной подложки проводят в 100 мл раствора, содержащего 15 г уксуснокислой меди. Полученный катализатор имеет состав, вес.%: алюминий - 10,0 медь - 1,5, никель - 1,0, ФНС-5 - остальное. Каталитическая активность полученной системы приведена в таблице. Пример 4. Аналогичен примеру 1. Отличие состоит в том, что пропитку 100 г алитированной подложки проводят в 100 мл раствора, содержащего 15 г уксуснокислой меди. Пропитка 100 г полученного катализатора в 100 мл раствора, содержащего 15 г азотнокислого никеля. Полученный катализатор имеет состав, вес.%: алюминий - 10,0, медь - 1,5, никель - 1,5, ФНС-5 - остальное. Каталитическая активность полученной системы приведена в таблице. Аналогично приведенным примерам приготавливают катализаторы, содержащие
10 вес. % алюминия, 1,0 вес.% меди, 0,5 вес.% никеля, ФНС-5 - остальное (пример 5);
10 вес. % алюминия, 0,5 вес.% меди, 0,5 вес.% никеля, ФНС-5 - остальное (пример 6);
10 вес. % алюминия, 1,0 вес.% меди, 1,5 вес.% никеля, ФНС-5 - остальное (пример 7);
10 вес. % алюминия, 0,5 вес.% меди, 1,5 вес.% никеля, ФНС-5 - остальное (пример 8);
10 вес. % алюминия, 1,5 вес.% меди, 0,5 вес.% никеля, ФНС-5 - остальное (пример 9).
Формула изобретения
Алюминий - 10,0
Медь - 0,5 - 1,5
Никель - 0,5 - 1,5
ФНС-5 - Остальное
РИСУНКИ
Рисунок 1