Изобретение относится к области электротехники и энергомашиностроения и может быть использовано при производстве и эксплуатации турбогенераторов и иных нуждающихся в охлаждении электрических машин. Техническая задача данного изобретения состоит в энерго- и ресурсосбережении при производстве и эксплуатации турбогенератора, а также в повышении надежности их работы. Сущность изобретения состоит в том, что согласно данному способу охлаждение турбогенератора газообразной средой осуществляют отвод тепла от тепловыделяющих элементов турбогенератора. Причем в качестве охлаждающей среды используют природный газ с температурой (-30°С) - (+20°C), который под избыточным давлением напрямую через вентиляционную сеть турбогенератора подают к горелкам топок, и осуществляют при его движении отвод тепла от тепловыделяющих элементов конструкции турбогенератора.
Изобретение относится к области энергомашиностроения и может быть использовано при производстве и эксплуатации турбогенераторов и иных нуждающихся в охлаждении электрических машин.
Известны способы охлаждения турбогенераторов циркулирующим в замкнутом контуре газообразными воздухом, техническим водородом (97% водорода и 3% воздуха) и чистым водородом [Титов В.В., Хуторецкий Г.М. и др. Турбогенераторы. - Л.: Энергия, 1967. С. 19-22, С. 70-81, С. 111-117].
Недостатками всех известных способов охлаждения турбогенераторов являются уменьшение вырабатываемой ими мощности из-за недостаточного охлаждения тепловыделяющих элементов их конструкции (статора, обмоток статора, ротора и др.) и выброс в окружающую среду отводимого от них тепла, количество которого может достигать 5% от вырабатываемой мощности. При использовании способов необходимы теплообменники для охлаждения газообразных воздуха, технического водорода или чистого водорода, вентиляторы для их циркуляции внутри турбогенератора и насосы для перекачивания воды, затраты энергии на их привод, что усложняет и утяжеляет конструкцию турбогенератора, делает его эксплуатацию менее надежной и менее длительной, более сложной и дорогостоящей.
Наиболее близким по технической сущности и достигаемому эффекту к заявляемому является способ охлаждения турбогенератора газообразным чистым водородом [Титов В. В. , Хуторецкий Г.М. и др. Турбогенераторы. - Л.: Энергия, 1967. С. 21, 74-82, 111-117].
Он получил самое широкое распространение в современном турбогенераторостроении и состоит в следующем. Внутри турбогенератора с помощью вентилятора организуется циркуляция находящегося под избыточным давлением газообразного чистого водорода. При своем движении газообразный чистый водород омывает тепловыделяющие элементы конструкции турбогенератора и нагревается. В настоящее время все турбогенераторы выполняются с замкнутым циклом охлаждения, так что нагревшийся газообразный чистый водород направляется с помощью уже указанных выше вентиляторов в трубчатые теплообменники, которые почти всегда встраиваются в корпус статора. Газообразный чистый водород омывает снаружи трубки теплообменников, отдает тепло движущейся внутри трубок воде, охлаждается и возвращается в вентиляционную сеть турбогенератора на охлаждение статора, обмоток статора и ротора и др.
Недостатками способа охлаждения турбогенератора газообразным чистым водородом являются уменьшение вырабатываемой им мощности из-за недостаточного охлаждения тепловыделяющих элементов конструкции (статора, обмоток статора, ротора и др. ) и выброс в окружающую среду отводимого от этих элементов тепла. При использовании газообразного чистого водорода необходимы теплообменники для его охлаждения, вентиляторы для циркуляции газообразного чистого водорода внутри турбогенератора и насосы для перекачивания воды, затраты энергии на их привод, что усложняет и утяжеляет конструкцию турбогенераторов, делает их эксплуатацию менее надежной и менее длительной, более сложной и дорогостоящей.
Расчеты интенсивности теплообмена при турбулентном течении в вентиляционной сети турбогенератора основываются на том, что величина коэффициента теплоотдачи

при одинаковых диаметрах охлаждающих каналов и скорости движения охладителя пропорциональна комплексу

где

и

- коэффициенты теплопроводности и кинематической вязкости охладителя; P
r - число Прандтля для охладителя [Титов В.В., Хуторецкий Г.М. и др. Турбогенераторы. - Л.: Энергия, 1967. С. 847].
Используя формулу (I), получаем, что для газообразных воздуха, технического водорода и чистого водорода величины

соотносятся как 1:1,3:1,44, т. е. применение газообразного чистого водорода дает увеличение коэффициента теплоотдачи

на 44% по сравнению с воздушным охлаждением и на 10,8% - по сравнению с охлаждением техническим водородом [Титов В.В., Хуторецкий Г.М. и др. Турбогенераторы. - Л.: Энергия, 1967, с. 75]. Однако количество тепла q, отводимое с единицы площади поверхности за единицу времени, характеризующее эффективность способа охлаждения, определяется не только коэффициентом теплоотдачи

, но и величиной разности между температурой поверхности тела и температурой охлаждающей среды, т.к. величина q рассчитывается по формуле q =

(t
пов-t
охл), (2) где q - плотность теплового потока; t
пов и t
охл - температура поверхности и температура охлаждающей среды соответственно [Михеев М.А., Михеева И. М. Основы теплопередачи. - М.: Энергия. - 1973. С. 67].
В газообразном чистом водороде, который применяют для охлаждения турбогенераторов, содержатся пары воды и если температура поверхности трубок теплообменников-охладителей ниже температуры точки росы, то пары воды конденсируются и капельки влаги вносятся циркулирующим газообразным чистым водородом в вентиляционную сеть турбогенератора. Чтобы избежать это опасное явление, во внутрь трубок охладителей газообразного чистого водорода подают теплую воду и тогда температура их наружной поверхности будет выше точки росы влаги в водороде.
Охладители газообразного чистого водорода для турбогенераторов рассчитываются на температуру входящей воды 33
oC, причем перегрев ее в газоохладителе составляет 5-7
oC [Титов В.В., Хуторецкий Г.М. и др. Турбогенераторы. - Л. : Энергия, 1967, С. 57]. При способе охлаждения газообразным чистым водородом его температура в вентиляционной сети турбогенератора повышается на 20-25
oC [Титов В.В., Хуторецкий Г.М. и др. Турбогенераторы. - Л.: Энергия, 1967, С. 54].
Так как средняя температура воды в теплообменнике-охладителе равна [(33+7)+33] /2= 36,5
oC, а минимальная разность температуры воды и газообразного чистого водорода в нем не менее 5
oC, то в самом благоприятном режиме температура газообразного чистого водорода на входе в турбогенератор равна 36,5+5= 41,5
oC. Отсюда следует, что даже при минимальном подогреве в 20
oC на выходе из турбогенератора температура газообразного чистого водорода равна 41,5+20=61,5
oC, а средняя его температура составляет t
охл = (41,5 + 61,5) = 51,5
oC.
Вследствие этого температура статора, обмоток статора и ротора и др. большая и уменьшается вырабатываемая мощность турбогенератора.
Применение газообразного чистого водорода в системе охлаждения турбогенератора достаточно опасно, т. к. концентрационный предел воспламенения газообразного чистого водорода в воздухе лежит в широком диапазоне от 4% до 74% [Хзмалян Д. М., Каган Я.А. Теория горения и топочные устройства. - М.: Энергия. - 1976. С. 139].
Задача, на решение которой направлено заявляемое изобретение, - энерго- и ресурсосбережение при производстве и эксплуатации турбогенераторов, повышение длительности и надежности их работы.
Поставленная задача решается тем, что в способе охлаждения турбогенератора газообразной средой, по которому осуществляют отвод тепла от тепловыделяющих элементов его конструкции, в отличие от прототипа в качестве охлаждающей среды используют природный газ с температурой (-30
oC)- (+20
oC), который под избыточным давлением напрямую подают через вентиляционную сеть турбогенератора к горелкам топок.
Пример конкретной реализации способа.
Конкретная реализация способа такова: под избыточным давлением напрямую через вентиляционную сеть турбогенератора к горелкам топок подают природный газ с температурой (-30
oC)-(+20
oC) и осуществляют при его движении отвод тепла от тепловыделяющих элементов конструкции турбогенератора (корпус статора, обмотки статора и ротора и др.).
Расчеты по формуле (I) дают для природного газа коэффициент теплоотдачи

на 25,7% меньшим, чем при использовании прототипа. Но этот недостаток природного газа компенсируется тем, что в подаваемом на промышленные предприятия природном газе практически нет паров воды. В любом случае точка росы влаги в пункте сдачи природного газа предприятиями Газпрома РФ ниже его температуры [ГОСТ 5542-87 Газы горючие природные для промышленного и коммунально-бытового назначения. Технические условия. - М.: Изд-во стандартов. - 1987. С. 2, п. 1.2.].
Поэтому температура природного газа перед его подачей в вентиляционную сеть турбогенератора и его средняя температура t
охл в этой сети может поддерживаться низкой, намного меньшей, чем в прототипе: при температуре природного газа (-30
oC)-(+20
oC) и минимальном его подогреве в вентиляционной сети на 20
oC средняя температура t
охл равна (-20
oC)-(+30
oC) вместо 51,5
oC в прототипе. Вследствие этого применение природного газа существенно увеличивает количество тепла, отводимого им от охлаждаемых элементов конструкции турбогенератора, по сравнению с прототипом: в формуле (2) для подсчета величины q сомножитель

на 25,7% меньше, а сомножитель t
пов - t
охл на 150-400% больше, чем в прототипе. При этом температура статора, обмоток статора и ротора и др. становится меньше и увеличивается вырабатываемая турбогенератором мощность. Кроме того, тепло, воспринятое от них природным газом, не выбрасывается в окружающую среду, а вносится в топку котельного агрегата и там полезно используется.
Достичь низкой температуры t
охл природного газа очень легко, т.к. он поступает на газораспределительные пункты теплоэлектростанций с избыточным давлением 1,2 и 0,6 МПа, а необходимое его избыточное давление перед горелками топок должно быть равным от 5 до 70 кПа [Роддатис К.Ф. Котельные установки. - М.: Энергия, 1977. С. 155]. Снижение давления газа перед турбогенератором приводит и к снижению его температуры.
Применение природного газа для охлаждения турбогенератора существенно снижает опасность возникновения взрыва и развития пожара при аварии по сравнению с прототипом, поскольку природный газ менее склонен поддерживать горение в смеси с воздухом: концентрационный предел воспламенения природного газа в воздухе лежит в узком диапазоне от 5 до 15% [ГОСТ 5542-87 Газы горючие природные для промышленного и коммунально-бытового назначения. Технические условия. - М.: Изд-во стандартов. - 1987. С. 2, п. 1.3.2].
Таким образом, предлагаемое изобретение обеспечивает энерго- и ресурсосбережение при производстве и эксплуатации турбогенераторов, повышение надежности и ресурса их работы, т.к. при использовании способа охлаждения турбогенераторов природным газом и его подаче напрямую через турбогенератор к топливным горелкам увеличивается вырабатываемая мощность и полезно используется выделяющееся при работе турбогенератора тепло, отпадает потребность в теплообменниках-охладителях, в вентиляторах и водяных насосах и в затратах энергии на их привод, а также уменьшаются затраты на эксплуатацию.
Формула изобретения
Способ охлаждения турбогенератора газообразной средой, по которому осуществляют отвод тепла от тепловыделяющих элементов его конструкции, отличающийся тем, что в качестве охлаждающей среды используют природный газ с температурой (-30
oC) - (+20
oC), который под избыточным давлением напрямую через вентиляционную сеть турбогенератора подают к горелкам топок, и осуществляют при его движении отвод тепла от тепловыделяющих элементов конструкции турбогенератора.