Способ осуществления трехфазных каталитических процессов
Изобретение относится к химии, а именно к катализу трехфазных процессов "газ-жидкость-твердое". Технический результат - преодоление вызываемых диффузионным торможением ограничений активности и селективности без применения мелкодисперсных катализаторов. В предлагаемом изобретении процесс осуществляют в режиме вынужденного потока реактантов сквозь однородные макропористые каталитические мембраны с порами диаметром не менее 50 нм при объеме пор не менее 0,05 см3/см3. 2 з.п. ф-лы, 2 ил.
Изобретение относится к области химии, а именно к катализу трехфазных процессов "газ-жидкость-твердое".
Трехфазные каталитические процессы типа "газ-жидкость-твердое" традиционно проводят в реакторах периодического действия, где реакция между газом и жидкостью протекает на суспендированных порошкообразных катализаторах при интенсивном перемешивании реакционной смеси / G.C.Bond, Heterogeneous Catalysis: Principles and Applications, Clarendon, Oxford, 1987/. Подобная организация процесса обусловлена необходимостью снижения негативного влияния внешней и внутренней диффузии реактантов на активность и селективность реакции. Существенным недостатком традиционного способа осуществления процесса является необходимость отделения мелких частиц катализаторов от реакционной смеси по завершении реакции. Один из возможных путей интенсификации межфазного массообмена состоит в обеспечении вынужденного (под влиянием градиента давления) потока реагирующей смеси сквозь однородные поры каталитической мембраны. Подобная ситуация принципиально недостижима, если в качестве носителя используются традиционные зернистые пористые материалы: в последнем случае транспорт реагентов внутри пористого зерна является исключительно диффузионным (фиг. 1). Разный характер транспорта вещества в порах мембраны и зернистого катализатора может приводить к различиям в условиях массо- и теплообмена, причем вынужденный поток сквозь пористую каталитическую мембрану способен обеспечить более высокие коэффициенты переноса массы и тепла. В случае наличия внутридиффузионного торможения на зернистом катализаторе последнее обстоятельство открывает возможность более эффективного осуществления реакции с повышением наблюдаемой активности и селективности в присутствии пористой каталитической мембраны. На фиг. 1 приведена принципиальная схема массопереноса при движении потока вещества сквозь пористую мембрану (А) и слой гетерогенного катализатора (Б). Каталитические мембраны различных типов применяются в гетерогенно-каталитических процессах начиная с 1960-х годов. Известно применение непористых / Патент США N 3290406, 1966/, мезопористых /J.Peureux, M.Torres, H.Mozzanega, Nitrobenzene liquid-phase hydrogenation in a membrane reactor. Catalysis Today, 25 (1995) 409-415/ и микропористых /C. Lange, S.Storck, B.Tesche, J.Catalysis, 175 (1998) 280/ каталитических мембран в гетерогенно-каталитических процессах. Общим недостатком упомянутых аналогов является необходимость применения дорогостоящих металлических или композитных керамических мембран, а также малая каталитически активная поверхность мембраны, близкая к ее геометрической наружной поверхности. Известна работа /C.Lange, S.Storck, B.Tesche and W.F.Maier, J.Catalysis, 175 (1998) 280/. Каталитическая мембрана обладает анизотропной структурой с микропористым селективным разделяющим слоем (номинальный диаметр пор порядка 0,5-1 нм, толщина селективного слоя порядка 0,2-0,5 мкм), причем каталитически активный компонент (Pt) находится именно в этом слое. Эти особенности обусловливают следующие недостатки: высокое гидравлическое сопротивление каталитической мембраны проникающему сквозь нее потоку реагирующей смеси (углеводороды с растворенным в них водородом); малое количество каталитически активного компонента в мембране (порядка 1


Каталитическую мембрану готовят путем пропитки керамической мембраны-носителя (диск диаметром 45 мм и толщиной 4,6 мм, диаметр пор 1 мкм, удельная поверхность 1 м2/г) водным раствором нитрата меди и хлорида палладия с последующей сушкой при комнатной температуре, окислением воздухом при 573К и восстановлением водным раствором NaBH4 при комнатной температуре. В условиях протока раствора NaNO3 сквозь каталитическую мембрану (вентиль на выходе из реактора открыт). 90%-ную конверсию NO3-достигают за 110 минут. Пример 7 (сравнительный). Каталитическую мембрану, содержащую 1,6 мас.% палладия и 1,2 мас.% меди, помещают в реактор, аналогичный изображенному на фиг. 2, и испытывают в реакции восстановления нитрат-ионов. Для этого в реактор заливают водный раствор нитрата натрия и подают водород. В первом опыте вентиль на выходе из реактора был закрыт, в результате чего пористое пространство мембраны с активным компонентом Pd-Cu, находящимся на стенках пор, было доступно реактантам лишь за счет диффузии. При температуре 298K, давлении водорода


Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2
Похожие патенты:
Изобретение относится к области нефтехимии, в частности к реакторам для дегидрирования парафиновых углеводородов
Изобретение относится к устройствам для каталитического дегидрирования углеводородов, в частности к реакторам радиального типа, и может быть использовано в нефтехимической промышленности при дегидрировании этилбензола в стирол
Изобретение относится к способу гетерогенного экзотермического синтеза формальдегида при избыточном количестве кислорода, в частности в реакторах синтеза, которые имеют несколько соединенных последовательно адиабатических каталитических слоев, включающему следующие стадии: подачу газообразных реагентов, содержащих метанол и избыточное количество кислорода в первый из указанных каталитических слоев; прохождение указанных газообразных реагентов через каталитические слои, сопровождающееся частичным окислением метанола
Изобретение относится к способу модернизации реакторов для повышения эффективности гетерогенного экзотермического синтеза
Изобретение относится к процессам и аппаратам химической технологии и может быть использовано для осуществления экзотермического гетерогенного синтеза, в частности в производстве метанола или аммиака из синтез-газа
Изобретение относится к химическому реактору и способу с использованием химического реактора, в котором применяют установку теплообменных перегородок, внутри реактора, которые будут поддерживать температуру внутри реактора в желаемом интервале во время реакции
Изобретение относится к способу изготовления сотового элемента из металлических листов, набранных в пакет и/или свернутых в рулон
Изобретение относится к производству азотной кислоты, а именно к сеткам из благородных металлов, которые в виде пакетов применяются для улавливания платины и родия, улетучивающихся с поверхности катализатора при реакции окисления аммиака
Изобретение относится к устройству и способу для изготовления элемента с сотовой структурой, состоящего из множества по меньшей мере частично структурированных металлических листов, образующих множество каналов для прохождения текучей среды
Металлический элемент с сотовой структурой // 2153933
Изобретение относится к металлическому элементу с сотовой структурой, имеющему большое количество каналов для текучей среды, расположенных в направлении движения потока и выполненных из металлических листов
Изобретение относится к многоцелевой каталитической дистилляционной колонне и к применению этой колонны для получения эфира посредством взаимодействия изоолефина со спиртом
Изобретение относится к способу изготовления сотового элемента из термостойких металлических листов, набранных в пакет и/или свернутых в рулон