Изобретение предназначено для полупроводниковой техники и может быть использовано при получении полупроводниковых подложек для светоизлучающих диодов. На подложку - монокристаллический
-SiC- наносят методом термохимического осаждения из паровой фазы поликристаллический слой
-SiC. Температура осаждения 1300-1900°С. Комплекс монокристалл
-SiC-поликристалл
-SiC подвергают термообработке под давлением насыщенного пара SiC для превращения
-SiC в монокристалл. Температура термообработки 1800-2400°С. Монокристалл
-SiC ориентирован в том же направлении, что и кристаллографическая ось монокристалла
-SiC. Получают монокристалл большого размера, превосходящий по термостойкости, механической прочности, емкости, частоте, электрической прочности и стойкости к внешним воздействиям известные полупроводниковые материалы. 2 с. и 9 з.п.ф-лы, 3 ил.
Изобретение относится к монокристаллическому карбиду кремния SiC и способу его получения, в частности к монокристаллическому SiC, используемому в качестве полупроводниковой подложки для светоизлучающего диода и электронного устройства или т.п., и к способу его получения.
Описание предшествующего уровня техники SiC (карбид кремния) обладает исключительными свойствами: теплостойкостью и механической прочностью и высоким сопротивлением излучению. Кроме того, он позволяет легко контролировать валентность электронов и дырок посредством легирования какой-либо примесью. SiC имеет широкую запрещенную зону (например, монокристалл 6Н-SiC имеет запрещенную зону около 3,0 эВ, а монокристалл 4H-SiC имеет запрещенную зону около 3,26 эВ). Это позволяет обеспечить высокие показатели по емкости, частоте, электрической прочности диэлектрика и стойкости к окружающим условиям, которые недостижимы в существующих полупроводниковых материалах, таких как Si (кремний) и GaAs (арсенид галлия). Поэтому монокристаллический SiC заслуживает внимания как материал, который может стать полупроводниковым материалом для энергетических приборов следующего поколения.
Известен способ выращивания (получения) монокристаллического SiC такого типа методом сублимации и рекристаллизации с использованием затравочного кристалла, а также способ, при котором эпитаксиальное выращивание осуществляют в условиях высокой температуры на кремниевой подложке, используя метод химического осаждения из паровой фазы (метод ХОПФ), в результате чего получают монокристаллический кубический SiC (

-SiC). Однако в этих известных методах скорость выращивания кристалла составляет всего 1 мкм/ч. Кроме того, недостатком метода сублимации и рекристаллизации является то, что в выращиваемом кристалле количество микроотверстий диаметром в несколько микрон, проходящих через кристалл в направлении роста, остается в пределах 100-1000 на см
2. Такие микроотверстия называют микротрубчатыми дефектами, и они вызывают возникновение тока утечки при изготовлении полупроводникового устройства. Эти проблемы препятствуют практическому использованию монокристаллического SiC, имеющего более высокие характеристики, чем другие существующие полупроводниковые материалы, такие как SiC и GaAs.
При использовании высокотемпературного метода ХОПФ температура подложки достигает 1700-1900
oC, чтобы обеспечить восстановительную атмосферу высокой чистоты. Поэтому данный метод трудно осуществим с точки зрения оборудования. Кроме того, эпитаксиальное выращивание ограничено по скорости.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ Учитывая перечисленные выше недостатки известного уровня техники, в основу настоящего технического решения поставлена задача получения качественного монокристаллического SiC с минимальным количеством дефектов кристаллической решетки и микротрубчатых дефектов, которая решается посредством проведения высокотемпературной термообработки. Еще одной задачей изобретения является создание способа, позволяющего настолько повысить скорость выращивания монокристаллического SiC, чтобы обеспечить возможность получения монокристалла достаточной площади и тем самым ускорить его практическое применение в качестве полупроводникового материала.
Предложенный монокристаллический SiC отличается тем, что комплекс, в котором поликристаллический слой, состоящий из атомов Si и C, сформирован на поверхности основы из монокристаллического SiC, подвергают термообработке, обеспечивающей превращение поликристаллов поликристаллического слоя в монокристалл и выращивание монокристалла, ориентированного в том же направлении, что и кристаллографическая ось монокристаллической основы.
Согласно изобретению комплекс, содержащий основу из монокристаллического SiC и поликристаллический слой, сформированный на поверхности основы, подвергают высокотемпературной термообработке, обеспечивающей фазовое превращение поликристаллов поликристаллического слоя, блокирование проникновения примесей извне между основой из монокристаллического SiC и поликристаллическим слоем, ориентацию кристалла в том же направлении, что и кристаллографическая ось монокристаллического SiC основы, и образование единого целого с монокристаллом основы, что позволяет выращивать качественный монокристалл большой площади с весьма ограниченным количеством дефектов кристаллической решетки и микротрубчатых дефектов. Тем самым обеспечивается возможность ускорить практическое применение монокристаллического SiC, который превосходит по емкости, частоте, электрической прочности диэлектрика и устойчивости к внешним воздействиям существующие полупроводниковые материалы, такие как Si (кремний) и GaAs (арсенид галлия), и может использоваться как полупроводниковый материал для энергетических приборов.
Предложенный способ получения монокристаллического SiC заключается в том, что наносят поликристаллический слой, состоящий из атомов Si и C, на поверхность основы из монокристаллического SiC, подвергают комплекс термообработке для превращения поликристаллов поликристаллического слоя в монокристалл, обеспечивая тем самым выращивание как единое целое монокристалла, ориентированного в том же направлении, что и кристаллографическая ось монокристаллического SiC основы.
Этот аспект изобретения обеспечивает такой же результат, как и первое изобретение, а именно облегчает выращивание качественного монокристаллического SiC с минимальным количеством дефектов кристаллической решетки и микротрубчатых дефектов с высокой эффективностью с точки зрения площади и количества, а это позволяет стабильно производить и поставлять в промышленных масштабах монокристаллический SiC, являющийся полупроводниковым материалом с очень высокими характеристиками.
В предложенном способе получения монокристаллического SiC поликристаллический слой, входящий в состав комплекса, является поликристаллическим слоем

-SiC, выращенным на поверхности основы из монокристаллического SiC методом термохимического осаждения из паровой фазы, и температура термохимического осаждения поликристаллического слоя

-SiC из паровой фазы составляет от 1300 до 1900
oC. При этом получается монокристаллический SiC высокой чистоты и высокого качества, имеющий минимальное количество дефектов кристаллической решетки и микротрубчатых дефектов, а также блокируется проникновение и диффузия примесей между основой из монокристаллического SiC и поликристаллическим слоем на ее поверхности.
Перечень фигур чертежей Фиг. 1 схематически изображает комплекс перед термообработкой для получения монокристаллического SiC согласно изобретению, фиг. 2 изображает увеличенный вид основной части перед термообработкой для получения монокристаллического SiC, фиг. 3 изображает увеличенный вид основной части монокристаллического SiC после термообработки.
Подробное описание предпочтительных вариантов реализации изобретения В дальнейшем описывается вариант реализации изобретения. На фиг.1 схематически показан комплекс M перед термообработкой монокристаллического SiC. Комплекс M формируют путем наращивания слоя 2 из поликристаллического кубического

-SiC на поверхность основы 1 из монокристаллического гексагонального

-SiC (типа 6Н или 4Н) методом термохимического осаждения из паровой фазы (в дальнейшем именуемого как метод термического ХОПФ) при температуре в интервале 1300-1900
oC. Как ясно видно на микроснимке протравленного участка на фиг.2, на стадии наращивания слоя 2 поликристаллического

-SiC поликристаллы 4 поликристаллического слоя 2

-SiC наращиваются на поверхности основы 1 из монокристаллического

-SiC, содержащего дефекты кристаллической решетки, при этом основа 1 из монокристаллического

-SiC и слой 2 из поликристаллического

-SiC контактируют друг с другом по граням кристаллов разной формы, так что ясно видна линейная межфазная граница 3.
После этого весь комплекс M подвергают термообработке под давлением насыщенного пара SiC при температуре от 1900 до 2400
oC, предпочтительно, 2000-2200
oC. При этом поликристаллы 4 слоя 2 поликристаллического

-SiC претерпевают фазовое превращение в

-SiC, ориентированный в том же направлении, что и кристаллографическая ось монокристаллического

-SiC основы 1, и объединяются в единое целое с монокристаллом основы 1 монокристаллического SiC, в результате чего выращивается большой монокристалл 5.
Когда комплекс M, в котором поликристаллы 4 поликристаллического слоя 2

-SiC сформированы на поверхности основы 1 монокристаллического

-SiC методом термического ХОПФ, подвергается термообработке, описанной выше, в поверхности межфазной границы 3 происходит рост кристалла, в основном твердофазный, при котором колебания кристаллической решетки, происходящие на поверхности межфазной границы 3, изменяют расположение атомов. В результате, как ясно показано на микроснимке протравленного участка на фиг.3, можно получить монокристаллический SiC высокого качества, практически лишенный дефектов кристаллической решетки и микротрубчатых дефектов (10 или меньше на 1 см
2), с гарантированным большим размером в смысле площади.
В этом варианте в качестве основы из монокристаллического SiC использована основа 1 из монокристаллического

-SiC. Альтернативно можно использовать, например, спеченный элемент из

-SiC или спеченный элемент из монокристаллического

-SiC. Слой 2 из поликристаллического кубического

-SiC, который наращивается на поверхности основы 1 из монокристаллического

-SiC методом термического ХОПФ, используется в качестве поликристаллического слоя. Альтернативно можно использовать, например, слой из поликристаллического кубического

-SiC, спеченный элемент из SiC высокой чистоты или аморфный слой высокой чистоты (10
14 атм/см
3 или ниже), что также позволит получить монокристаллический SiC высокого качества, как и в описанном выше варианте.
В качестве монокристаллического

-SiC основы 1 можно использовать SiC типа 6Н или 4Н. При использовании SiC типа 6Н монокристалл, полученный в результате превращения поликристаллов слоя 2 из поликристаллического

-SiC в

-SiC в процессе термообработки, легко выращивается в той же форме, что и монокристалл типа 6Н. Когда используется основа 1 из монокристалла типа 4Н, происходит легкое превращение и выращивание монокристалла в той же форме, что и монокристалл типа 4Н.
Предпочтительно, чтобы температура термообработки комплекса M была в пределах 1900-2400
oC, а время обработки составляло 1-3 часа. При температуре термообработки ниже 1900
oC кинетическая энергия атомов не может передаваться большей части SiC, образующего межфазную границу. При температуре выше 2400
oC образуется тепловая энергия, которая превосходит энергию разложения SiC, и происходит разложение самих монокристаллов SiC.
Промышленная применимость Предложенный способ, согласно которому комплекс, содержащий поликристаллический слой, состоящий из атомов Si и C, сформированный на поверхности основы из монокристаллического SiC, подвергают термообработке, обеспечивающей выращивание как единое целое монокристалла большого размера, ориентированного в том же направлении, что и кристаллографическая ось монокристаллического SiC основы, позволяет получить монокристалл высокого качества, обладающий исключительной термостойкостью и механической прочностью и обеспечивающий высокие показатели по емкости, частоте, электрической прочности диэлектрика и стойкости к внешним воздействиям, которые недостижимы в известных полупроводниковых материалах, при этом обеспечивается высокая эффективность и стабильность в смысле площади и количества.
Формула изобретения
1. Монокристаллический SiC, отличающийся тем, что комплекс, содержащий поликристаллический слой, состоящий из атомов Si и C, сформированный на поверхности основы из монокристаллического SiC, подвергнут термообработке, обеспечивающей превращение поликристаллов поликристаллического слоя в монокристалл и выращивание монокристалла, ориентированного в том же направлении, что и кристаллографическая ось монокристаллической основы.
2. Монокристаллический SiC по п.1, отличающийся тем, что упомянутой основой из монокристаллического SiC, входящей в состав упомянутого комплекса, является монокристаллический

-SiC.
3. Монокристаллический SiC по п.1, отличающийся тем, что упомянутый поликристаллический слой, входящий в состав комплекса, является слоем поликристаллического

-SiC, выращенным на поверхности основы из монокристаллического SiC методом термохимического осаждения из паровой фазы.
4. Монокристаллический SiC по п.3, отличающийся тем, что температура термохимического осаждения из паровой фазы упомянутого слоя поликристаллического

-SiC составляет 1300 - 1900
oC.
5. Способ получения монокристаллического SiC, отличающийся тем, что наносят поликристаллический слой, состоящий из атомов Si и C, на поверхность основы из монокристаллического SiC, и подвергают упомянутый комплекс термообработке для превращения поликристаллов упомянутого поликристаллического слоя в монокристалл, обеспечивая тем самым выращивание как единое целое монокристалла, ориентированного в том же направлении, что и кристаллографическая ось монокристаллической основы.
6. Способ получения монокристаллического SiC по п.5, отличающийся тем, что монокристаллический

-SiC используется в качестве упомянутой основы из монокристаллического SiC, входящей в состав упомянутого комплекса.
7. Способ получения монокристаллического SiC по п.5, отличающийся тем, что слой поликристаллического

-SiC, выращенный на поверхности упомянутой основы из монокристаллического SiC методом термохимического осаждения из паровой фазы, используется в качестве упомянутого поликристаллического слоя, входящего в состав упомянутого комплекса.
8. Способ получения монокристаллического SiC по п.7, отличающийся тем, что температура термохимического осаждения из паровой фазы упомянутого слоя поликристаллического

-SiC составляет 1300 - 1900
oC.
9. Способ получения монокристаллического SiC по п.7, отличающийся тем, что термообработку упомянутого комплекса проводят при температуре, превосходящей температуру термохимического осаждения из паровой фазы при формировании упомянутого поликристаллического слоя, и при давлении насыщенного пара SiC.
10. Способ получения монокристаллического SiC по п.9, отличающийся тем, что температура термообработки упомянутого комплекса составляет 1900 - 2400
oC.
11. Способ получения монокристаллического SiC по п.9, отличающийся тем, что температура термообработки упомянутого комплекса составляет 2000 - 2200
oC.
РИСУНКИ
Рисунок 1,
Рисунок 2,
Рисунок 3MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 21.05.2005
Извещение опубликовано: 27.12.2006 БИ: 36/2006