Способ измерения радиуса кривизны длиннофокусного зеркала
Изобретение относится к технической физике, конкретно к оптотехническим измерениям, и может быть использовано при изготовлении длиннофокусных оптических зеркал, а также при их эксплуатации. Способ основан на формировании параллельного светового пучка, направлении его на исследуемую поверхность, пространственном разделении пучка после его отражения от зеркала, создании разности хода у разделенных пучков и получении интерференционной картины, на основании которой вычисляют радиус кривизны зеркала. Способ позволит измерять радиус кривизны длиннофокусных зеркал с большой точностью, которая составляет 0,06 - 0,08 %, а также сократить измерительное расстояние в 10-100 раз. 1 ил., 1 табл.
Изобретение относится к области технической физики, конкретно к оптотехническим измерениям, и может найти применение в оптическом приборостроении при изготовлении длиннофокусных оптических зеркал, а также при их эксплуатации.
При создании современных телескопов наземного и космического базирования, лазерных систем, космической оптики остается актуальным вопрос высокоточного измерения оптических характеристик зеркал с большим радиусом кривизны. Известен способ измерения больших радиусов кривизны (Креопалова Г.В., Лазарева Н.А., Пуряев Д.Т. Оптические измерения. - М.: Машиностроение, 1987, с. 90-91), в котором формируют пучок света с известными характеристиками, направляют в оптическую систему и на основе пространственных характеристик отраженного пучка определяют радиус кривизны контролируемой оптической системы. Способ не удовлетворяет современным требованиям по точности, так как, например, для радиуса кривизны R = 100 м погрешность измерения составляет 1 м (1%). Известен способ определения фокусного расстояния длиннофокусных зеркал, выбранный нами в качестве прототипа (Патент РФ N 2072217, МПК G 01 M 11/00, приор. от 28.09.94), включающий формирование параллельного светового пучка, пространственное разделение его на два, отражение пучка от исследуемой поверхности, регистрацию пространственных характеристик обоих пучков в фокальной плоскости контролируемой системы и вычисление по ним фокусного расстояния и радиуса кривизны. Способ также имеет недостаточно высокую точность (0,1-0,2%) и нетехнологичен, так как требует для проведения измерений размещение измерительных приборов в фокальной плоскости контролируемой оптической системы, что при больших радиусах кривизны чрезвычайно громоздко, а иногда вообще трудно выполнимо. Нами теоретически обосновано и экспериментально подтверждено, что возможно высокоточное измерение радиусов кривизны длиннофокусных зеркал при переходе к интерферометрии сдвига и найденному методу обсчета полученной интерференционной картины. Предлагаемый способ определения радиуса кривизны длиннофокусного зеркала позволяет производить измерения больших радиусов кривизны вблизи контролируемой поверхности с погрешностью до 0,06-0,08%, что выше современного уровня в 1,5-2 раза. Такой технический эффект достигнут, когда в способе измерения радиуса кривизны длиннофокусного зеркала, включающем формирование светового пучка, отражение его от исследуемой поверхности, пространственное разделение пучка на два, регистрацию пространственных характеристик пучков и вычисление по ним радиуса кривизны, световой пучок формируют параллельным, разделяют пучок после отражения, создают оптическую разность хода у разделенных пучков, получают интерференционную картину, а радиус кривизны R находят по ее характеристикам из выражения:



L - расстояние от контролируемого зеркала до плоскости регистрации. Знак "+" - для вогнутого зеркала, знак "-" - для выпуклого. На чертеже представлена схема устройства, реализующего заявленный способ, где источник 1 излучения, светофильтр 2, конденсор 3, точечная диафрагма 4, объектив 5 коллиматора, контролируемое зеркало 6, пластина или клин 7, картина 8 в плоскости регистрации; d - расстояние между интерференционными полосами, i - угол падения пучка на пластину или клин,





Таким образом, повышение точности в предлагаемом способе достигается в конечном счете при использовании интерферометрии как метода, применение которого стало возможным при нахождении существующей зависимости радиуса кривизны контролируемой поверхности и параметров интерференционной картины, образуемой в результате взаимодействия пучков света после отражения от контролируемой поверхности с большим радиусом кривизны. Исключение влияния аберраций осуществляется известными приемами. Пример конкретного исполнения. На нашем предприятии на аттестованном стенде для оптотехнических испытаний крупногабаритной оптики были проведены измерения у сферического зеркала диаметром 1,5 м и радиусом кривизны примерно 50 м. В качестве источника использовался гелий-неоновый лазер с длиной волны 0,63 мкм. Конденсором с фокусным расстоянием 100 мм лазерный пучок фокусировался на точечной диафрагме диаметром 0,05 мм, помещенной в фокальной плоскости объектива коллиматора с фокусным расстоянием 2 мм. Выходящий из коллиматора параллельный пучок лучей диаметром 60 мм направлялся на контролируемое зеркало под углом
















Формула изобретения

при использовании оптического клина как устройства разделения,

при использовании плоскопараллельной пластины как устройства разделения,
где t - толщина пластины или клина по оптической оси;
d - расстояние между интерференционными полосами;
i - угол падения пучка на пластину или клин;
n - показатель преломления материала пластины или клина;


L - расстояние от контролируемого зеркала до плоскости регистрации;
знак "+" - для вогнутого зеркала, знак "-" - для выпуклого.
РИСУНКИ
Рисунок 1, Рисунок 2