Изобретение может быть использовано в химической и смежных отраслях промышленности, в частности, в производстве гранулированных минеральных удобрений. Сущность изобретения: барабанный гранулятор состоит из вращающегося барабана, на внутренней поверхности которого установлены лопатки, обратный шнек, конусный классификатор, загрузочной камеры, снабженной патрубками для ввода ретура и теплоносителя и форсункой для распыливания раствора, и разгрузочной камеры, имеющей патрубки для отвода отработанного теплоносителя и вывода гранулированного продукта. В нижней части классификатора в слое материала установлен вращающийся шнек. Шнек жестко укреплен на вращающемся валу, установленном в опорах стоек. Шнек имеет переменный диаметр, уменьшающийся по направлению к узкому торцу конуса классификатора, и переменный шаг, уменьшающийся в противоположном направлении. Техническим результатом изобретения является использование эффекта разделения частиц по размерам в скатывающемся слое завала, что позволяет непрерывно направлять в зону гранулообразования, преимущественно мелкую фракцию, что приводит к улучшению качества завесы. В результате повышается однородность гранулометрического состава продукта и выход товарной фракции. 2 ил.
Изобретение относится к гранулированию и сушке материалов и может быть использовано в химической и смежных отраслях промышленности, в частности в производстве гранулированных минеральных удобрений.
Известен барабанный гранулятор (см. Шахова Н.А. и др. Исследование тепло- и массообмена в промышленных грануляторах-сушилках. Химическая промышленность, 1974, N 2), содержащий вращающийся барабан с подъемно-лопастной насадкой, обратным шнеком и конусным классификатором, загрузочную камеру с форсункой для ввода раствора и патрубки ввода порошкообразного материала и теплоносителя и разгрузочную камеру.
Недостатки данного барабанного гранулятора заключаются в получении продукта неоднородного гранулометрического состава вследствие низкой эффективности разделения материала в конусном классификаторе.
Наиболее близким по технической сущности к предлагаемому гранулятору является барабанный гранулятор (см. а.с. СССР N 1169724, кл. В 01 J 2/12), содержащий вращающийся барабан, укрепленные на его поверхности лопатки, обратный шнек, конусный классификатор и установленный в нижней части классификатора в слое материала вращающийся шнек, загрузочную камеру с патрубками для ввода теплоносителя и ретура и форсункой для распыливания раствора, разгрузочную камеру с патрубками для вывода теплоносителя и продукта.
Его недостатком является низкий выход товарной фракции вследствие малоэффективного классифицирующего действия вращающегося шнека, имеющего нерациональные геометрические параметры, По этой причине часть мелкой фракции попадает в готовый продукт, а часть крупной фракции обратным шнеком возвращается на повторное укрупнение.
Задачей изобретения является повышение выхода товарной фракции за счет оптимальных условий разделения продукта в конусном классификаторе путем обеспечения подпора для мелкой фракции.
Задача изобретения достигается тем, что в барабанном грануляторе, содержащем вращающийся барабан, укрепленные на его поверхности лопатки, обратный шнек, конусный классификатор и установленный в нижней части классификатора в слое материала вращающийся шнек, загрузочную камеру с патрубками для ввода теплоносителя и ретура и форсункой для распыливания раствора, разгрузочную камеру с патрубками для вывода теплоносителя и продукта, шнек имеет переменный диаметр, уменьшающийся по направлению к узкому основанию конуса и переменный шаг, уменьшающихся в противоположном направлении. Причем диаметр шнека и его шаг определяются следующим образом:

S
i = S
max (d
min/d
i)
2 Максимальный шаг и минимальный диаметр определяются из условия транспортирования мелкой фракции в узком торце конуса по формуле

где d
min - минимальный диаметр шнека равный диаметру шнека постоянного сечения, рассчитываемого по производительности; d
max= d
minl/(D-D
k - максимальный диаметр шнека; l - длина участка барабана, занятого классификатором; D, D
k - диаметры широкого и узкого оснований конуса; L
i, L
ш - длина шнека текущая и общая; Q - производительность шнека по мелкой фракции, м
3/ч; n - частота вращения шнека, об/мин;

- коэффициент заполнения полости шнека материалом.
На фиг. 1 изображен барабанный гранулятор, продольный вертикальный разрез; на фиг. 2 - разрез А-А по фиг. 1.
Барабанный гранулятор состоит из вращающегося барабана 1, на внутренней поверхности которого установлены лопатки 2, обратный шнек 3, конусный классификатор 4 загрузочной камеры 5, снабженной патрубками для ввода ретура 6 и теплоносителя 7 и форсункой 8 для распыливания раствора, и разгрузочной камеры 9, имеющей патрубки для отвода отработанного теплоносителя 10 и вывода гранулированного продукта 11. В нижней части классификатора в слое материала установлен вращающийся шнек 12. Шнек 12 жестко укреплен на вращающемся валу 13, установленном в опорах 14 стоек.
Барабанный гранулятор работает следующим образом.
При вращении барабана 1 лопатки 2 создают завесу из частиц материала, на которую в прямотоке с теплоносителем форсункой 8 напыляют раствор материала. Укрупнившиеся частицы, продвигаясь по барабану, окатываются, уплотняются и сушатся. Попадая в конусный классификатор, материал распределяется следующим образом. Наиболее крупные частицы всплывают на поверхность завала, а мелкие погружаются внутрь него. По мере движения материала вдоль конуса происходит классификация частиц по крупности. При этом в центральной части слоя пересыпания сосредотoчивается мелкая фракция. Она захватывается вращающимся шнеком 12, установленным в центральной части слоя пересыпания, и транспортируется к широкому торцу конуса. После этого мелкая фракция захватывается обратным шнеком 3 и возвращается в головную часть барабана на доращивание. Крупные частицы, расположенные в верхней части скатывающегося слоя, выводятся из барабана за счет подпора продуктом перед классификатором.
В барабанном грануляторе реализуется эффект разделения полидисперсных частиц по размерам в слое при вращении барабана. Эффект заключается в том, что при вращении барабана крупные частицы скапливаются на поверхности скатывающегося слоя завала, а мелкие частицы погружаются внутрь слоя. Мелкая фракция, которая стремится занять место в центре слоя, транспортируется вращающимся шнеком к входному патрубку обратного шнека, которым возвращается на повторное укрупнение. Более крупная фракция удаляется от центра к периферии слоя и движется к выходу из барабана, Использование эффекта разделения частиц по размерам в скатывающемся слое завала позволяет непрерывно направлять в зону гранулообразования преимущественно мелкую фракцию, что приводит к улучшению качества завесы. В результате повышается однородность гранулометрического состава продукта и выход товарной фракции.
Для выполнения своего функционального назначения элементы конструкции предлагаемого гранулятора должны иметь следующие геометрические параметры.
Толщина слоя материала в завале, в котором накапливается мелкая фракция, максимальная у широкого торца конуса, а у узкого торца толщина слоя с мелкой фракцией минимальная (см. Калашников В.А. Разработка и исследование конструкции барабанного гранулятора-классификатора и методика его расчета. Дисс. канд. техн. наук, М., 1980).
Тогда в связи с функциональным назначением вращающегося шнека - транспортировать мелкую фракцию из зоны классификации к входному патрубку обратного шнека - он должен иметь переменные диаметр и шаг. Причем шнек должен иметь максимальный диаметр у широкого торца конуса (здесь толщина слоя мелкой фракции наибольшая) и постепенно уменьшаться до минимального диаметра у узкого торца конуса, т.е. диаметр шнека должен уменьшаться по направлению к узкому торцу конуса. В то же время для обеспечения постоянной производительности шнека по мелкой фракции его шаг должен изменяться в противоположном направлении - от максимальной величины у узкого торца конуса до минимальной у широкого торца.
Текущий диаметр шнека (при его общей длине, равной L
ш) на любой длине L
i может быть определен по формуле

Шаг шнека на любом произвольном его участке может быть вычислен как
S
i = S
max(d
min/d
i)
2 Максимальный шаг S
max и минимальный диаметр d
min шнека для наиболее полного исчерпывания мелкой фракции из классификатора должны определяться из условий транспортирования и обеспечения необходимой производительности по мелкой фракции в узком торце конуса по формуле

где Q - производительность шнека по мелкой фракции; n - частота вращения шнека,

- коэффициент заполнения полости шнека материалом.
Для выполнения своего функционального назначения шнек устанавливается в конусном классификаторе так, что ось его вращения совпадает с центром циркуляции засыпки материала.
Существенность заявленных соотношений размеров шнека с точки зрения задачи изобретения - повышение выхода товарной фракции - показана экспериментальным путем.
В качестве примера приведем экспериментальные данные по влиянию на выход товарной фракции новых элементов в коническом классификаторе.
Исследования проведены на лабораторном барабанном аппарате, геометрически подобном промышленному барабанному гранулятору, в условиях подобия силового поля. Конструкция лабораторной установки позволяла менять в хвостовой части классифицирующее устройство. В качестве исследуемого материала выбран гранулированный аммофос следующего гранулометрического состава: -1 мм - 33%; (+1)-(-2) мм - 33%; (+2)-(-5) мм - 33%.
Исследование заключалось в подаче материала через течку в аппарат и разделении его на две фракции: мелкую и крупную в отношении 1:2 соответственно, часть материала (в основном мелкая фракция) отбирается из классификатора обратным шнеком, а часть (в основном крупная фракция) выводится из классификатора за счет подпора продуктом перед классификатором. При исследовании получены следующие результаты.: Выход крупной (товарной) фракции,%: прототип 71 - 76, заявленное устройство 87 - 91.
Экспериментальным путем установлено также, что изменение диаметра и шага вращающегося шнека в ту или иную сторону от заявленного соотношения приводит к уменьшению выхода товарной фракции. Отличие диаметра и шага шнека на любом его участке по длине от заявленных значений нарушает соотношение между встречными потоками мелкой и крупной фракций материала и становится причиной их дополнительного локального перемешивания.
Пример. В барабанном грануляторе, конструктивно аналогичном заявленному, с диаметром барабана 0,5 м и длиной 1,5 м в хвостовой части на длине 0,5 м установлен усеченный конус с углом наклона образующей к оси конуса, равным 12
o. В нижней части конусного классификатора в слое материала установлен вращающийся шнек, имеющий производительность по мелкой фракции Q = 0,096 м
3/ч и следующие геометрические размеры: d
max = 0,058 м; d
min = 0,04 м; S
max = 0,041 м; S
min = 0,022 м.
Предлагаемый гранулятор, основанный на использовании эффекта разделения частиц по размерам в завале, позволяет организовать классификацию материала и противоточное движение мелкой и крупной фракций по длине классификатора - постоянно направлять мелкие частицы обратным шнеком на повторное укрупнение, а крупные выгружать из барабана. По сравнению с прототипом предлагаемый гранулятор обеспечивает получение продукта более однородного гранулометрического состава за счет улучшения качества завесы, а также увеличение выхода товарной фракции.
Формула изобретения
Барабанный гранулятор, содержащий вращающийся барабан, укрепленные на его поверхности лопатки, обратный шнек, конусный классификатор и установленный в нижней части классификатора в слое материала вращающийся шнек, загрузочную камеру с патрубками для ввода теплоносителя и ретура и форсункой для распыливания раствора, разгрузочную камеру с патрубками для вывода теплоносителя и продукта, отличающийся тем, что шнек имеет переменный диаметр, уменьшающийся по направлению к узкому торцу конуса, и переменный шаг, уменьшающийся в противоположном направлении, причем диаметр шнека d
i и его шаг S
i определяют следующим образом:

S
i = S
max (d
min/d
i)
2,
максимальный шаг и минимальный диаметр определяются из условия транспортирования мелкой фракции в узком торце конуса по формуле

где d
min - минимальный диаметр шнека, равный диаметру шнека постоянного сечения, рассчитываемого по производительности;
d
max = d
minl/(D - D
k) - максимальный диаметр шнека;
l - длина участка барабана, занятого классификатором;
D, D
k - диаметры широкого и узкого торцов конуса;
L
i, L
ш - длина шнека текущая и общая;
Q - производительность шнека по мелкой фракции, м
3/ч;
n - частота вращения шнека, об/мин;

- коэффициент заполнения полости шнека материалом.
РИСУНКИ
Рисунок 1,
Рисунок 2