Устройство для выработки механической энергии и способ выработки механической энергии
Использование: в энергетике и транспорте, а также в других отраслях производственной деятельности. Однорядный энергетический модуль содержит статор и ротор с роликами, объединенными общим сепаратором. Статор и ролики выполнены из постоянных магнитов или из электромагнитов на основе слоистых композитных магнитных, проводящих и диэлектрических материалов. Основной вал устройства посредством обгонных муфт связан спусковым двигателем, выводящим устройство в режим самоподдержания вращения, и системой нагрузки устройства в виде электродинамического генератора, связанного механически с основным валом устройства. Электромагнитные преобразователи расположены радиально на периферии устройства. Управление тягой осуществляется регулировкой отводимой от устройства механической энергии и созданием радиальной электрической поляризации на периферии устройства с помощью кольцевых электродов, имеющих с роликами ротора воздушный зазор. Электроды подсоединены к высоковольтному источнику напряжения. Способ включает подачу электроэнергии на запускающий механизм, раскручивание вала ротора до рабочей скорости, отвод вырабатываемой энергии и регулировку вырабатываемой энергии и тяги посредством изменения скорости вращения ротора и статора, изменения нагрузки присоединенного электрогенератора, а также с помощью регулировки высокого напряжения от внешнего источника питания. Технический результат заключается в уменьшении затрат энергии. 2 с. и 7 з.п.ф-лы, 17 ил.
Изобретение относится к преобразованию энергии, к автономным устройствам и способам, обеспечивающим это преобразование и используемым в энергетике и транспорте, а также в других отраслях производственной деятельности.
Известен электрический мотор-генератор, содержащий ротор и статор, ротор выполнен из постоянных магнитов, статор в виде электромагнита. Недостатком этого устройства является то, что устройство имеет ограниченное применение, поскольку реализуемый в нем способ преобразования механической энергии в электромагнитную требует наличия внешних источников энергии для обеспечения непрерывной работы [Патент Великобритании N2,282,708В от 6 ноября 1996 г.]. Наиболее близким к предлагаемому изобретению является устройство, содержащее магнитную систему в виде статора и аксиально расположенного ротора, и способ, включающий создание статором магнитного поля в области ротора, поляризацию квантовой структуры электронных оболочек атомов посредством нелинейных резонансных гиромагнитных эффектов, связанных с вращением и намагничиванием ротора магнитным полем статора [А. Эйнштейн, В. де Гааз. Экспериментальное доказательство существования молекулярных токов Ампера // Собр. научн. тр. М. : Наука, 1966. Т. 3, стр. 363-379, стр. 382-385]. Недостатком этого устройства и способа является необходимость постоянного использования внешнего источника энергии для обеспечения работы устройства при реализации данного способа. Предлагаемое изобретение решает техническую задачу создания высокоэффективного, автономного и экологически чистого преобразователя энергии квантового уровня и гравитационного поля в механическую энергию и организации способа преобразования энергии квантового уровня и гравитационного поля в механическую энергию. Поставленная техническая задача решается тем, что устройство для выработки механической энергии содержит один или более энергетических модулей, состоящих из статора и одного или более роторов, установленных соосно друг другу, роторы выполнены в виде роликов, установленных по окружностям, концентричным окружности статора с возможностью зацепления со статором посредством поперечных магнитных вставок для обеспечения вращения вокруг собственной оси ротора относительно статора и наоборот, а также систему для создания электрической поляризации, состоящую из электродов, расположенных вдоль ротора на периферии устройства, на которые подается высокое напряжение относительно статора, причем основной вал устройства связан с пусковым двигателем, выводящим устройство в режим самоподдержания вращения. Поставленная техническая задача также решается тем, что статор и ролики выполнены из постоянных магнитов, магнитных, и/или проводящих, и/или диэлектрических материалов и/или электромагнитов, и/или композитных материалов, а также тем, что система отбора мощности состоит из электродинамического генератора и электромагнитных преобразователей, расположенных вдоль ротора и обеспечивающих наведение ЭДС, поступающей в нагрузку, а также содержит систему для создания электрической поляризации и систему отбора мощности, выполненную механически связанной с ротором через обгонные фрикционные муфты, кроме того, элементы ротора ролики объединены общим сепаратором. Поставленная техническая задача также решается тем, что в способе выработки механической энергии, заключающемся в раскручивании вала ротора или статора, установленных с возможностью зацепления между собой посредством поперечных магнитных вставок, до скорости самоподдержания вращения и саморазгона, обеспечивающей появление тяги, вектор которой направлен по центральной оси статора и ротора, подают высокое напряжение на электроды, расположенные вдоль ротора на периферии устройства, регулируют тягу устройства и скорости вращения статора и ротора в режиме самоподдержания вращения посредством изменения нагрузки, либо соосным вращением статора относительно ротора, либо с помощью регулировки высокого напряжения. Такое выполнение изобретения позволяет преобразовать энергию квантового уровня вещества магнитных элементов статора и ротора за счет того, что каждый элемент рабочего тела устройства, будь то элементы ротора - ролики или статор, имеющие возможность как самостоятельного, так и совместного вращения, уже сами по себе представляют законченное устройство, взаимодействующее с квантовым уровнем организации материи и преобразующее гравитационное поле. Основными условиями этого взаимодействия являются соблюдение фрактальных подобий микро- и макроуровня и ограничение или регулирование степеней свободы созданного макрообъекта, аналог которого находится в микромире. Принцип работы патентуемого устройства заключается в том, что создается нелинейная резонансная связь между геометрически подобными объектами микро- и макроуровня. Эффекты взаимодействия с микроуровнем и преобразования гравитационного поля могут быть значительно усилены путем выбора различных вариантов пространственных компоновок, описанных в устройстве, в которых рассматривается совместная работа всех элементов рабочего тела как единой резонирующей конструкции. Хорошо известен прямой эффект Барнетта (1909 г.), заключающийся в намагничивании тел путем их вращения при отсутствии внешнего магнитного поля. Также хорошо известен и обратный эффект Барнетта, часто упоминающийся как эффект Эйнштейна-де-Гааза (1911 г.) [Берк Г.Ю. Справочное пособие по магнитным явлениям. М. Энергоатомиздат, 1991 г.], заключающийся в том, что при намагничивании цилиндрического образца ферромагнетика возникает вращательный момент. Аналогичные эффекты позже были обнаружены на основе техники парамагнитного и ядерного резонансов и в других вещественных средах [Richard R. Ernst. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. University Press, Oxford, England 1987]. В вышеописанных гиромагнитных эффектах происходит лишь предварительная слабая структурная поляризация. Но даже на этом предварительном уровне квантовые процессы порождают макроэффект, который в значительной степени может быть увеличен резонансной связью с внешними полями. В заявляемом устройстве для создания резонансной связи выбираются конкретные параметры элементарного квантового осциллятора, который представляет собой энергетически автономную атомную структуру кристаллической решетки рабочего тела устройства. В эти параметры входят: собственная частота колебаний, магнитные и спиновые моменты осциллятора. Исходя из конкретных параметров элементарного квантового осциллятора, создается механическая макромодель, фрактально повторяющая свойства своего квантового аналога в статическом варианте. Так как атомная структура изначально деполяризована, энергообмен с окружающим ее квантовым пространством происходит сферически симметрично. В процессе поляризации сферическая симметрия нарушается и создается симметрия плоская, эклиптическая, тем самым обеспечивая направленное энерговыделение. Заявленное устройство, как макроаналог квантового осциллятора, создается предварительно поляризованным, организуя внешнее поле. В процессе работы устройства обеспечивается нелинейное резонансное взаимодействие между этими взаимноподобными объектами посредством внешних полей. В результате этого квантовый и внешний макроосциллятор взаимонастраиваются и взаимозахватываются, как два нелинейных колебательных контура, обеспечивая устойчивый энергообмен, и квантовая деполяризованная структура поляризуется с выделением энергии. Принципиальным аналогом этого процесса может служить процесс ядерной цепной реакции в рабочем теле атомного взрывного устройства, где сам ядерный заряд в виде плутониевой сферы и системы имплозивной детонации является тем самым макрообъектом, представляющим собой масштабированное подобие неустойчивому ядру атома Pu239 [Петросьянц А.М. Создание первой советской атомной бомбы. М. Энергоатомиздат, 1995]. Условие соблюдения подобия и резонансного взаимодействия с квантовым уровнем подразумевает существование устойчивой вихревой, иерархической структуры, в общих чертах подобной вихрям, образующимся в сплошных средах. При этом энергия силового поля концентрируется в так называемых трубках тока (поля), окаймляющих тело вихря. В свою очередь каждая из трубок поля представляет собой уменьшенную модель наблюдаемой вихревой системы и так далее, проникая вглубь материи. Характеристики среды и тип поступающей энергии определяют степень концентрации энергии в трубках обычного вихря, которая лимитирована вязкостью среды, не способной бесконечно воспроизводить структуру трубок тока. Таким образом, в текучих средах ниже некоторого порогового размера структура вихря перестает воспроизводиться, а отношение минимального диаметра трубок тока к внешнему диаметру вихря, служащая индикатором степени концентрации энергии, является величиной конечной. Качественно иная картина наблюдается в случае с вихревой системой на квантовом уровне. Из теории электрослабых взаимодействий следует, что в масштабах, меньших 10-18 м, электромагнитное поле и слабое взаимодействие проявляют себя некоторым единым образом [Salam A. Elementary Particle Theory, Ed. N.Svartholm-Almguist and Wiksell, 1968.-p.367]. Благодаря подобной преемственности и взаимному превращению, разрушения силовых трубок не только не происходит, но, напротив, как следует из квантовой электродинамики, их феноменальные свойства концентрировать энергию внешнего источника многократно усиливаются благодаря включению квантовых процессов. В случае макроскопических масштабов, в пределах которых доминирующая роль принадлежит электромагнитным взаимодействиям, механизм концентрации энергии может быть описан как непрерывное уменьшение длины волны во внутренних силовых трубках. С переходом порога слабого взаимодействия и включения квантовых механизмов обмена энергией силовые поля более тонкой формы индуцируют квантово-резонансные явления энергетического взаимодействия, в которое оказываются вовлеченными несущие заряд легкие частицы лептонного облака. В результате резонансных явлений концентрация энергии происходит с дальнейшим уменьшением масштабов и смещением эффективного расстояния взаимодействующих частиц на субъядерный уровень. Масштабируемость структуры квантовой вихревой системы (КВС) приводит к взаимосвязанности электрослабого и сильного взаимодействия в масштабах 10-22 - 10-30 м [Окунь Л.Б. Лептоны и кварки, М. Наука, 1990.]. Таким образом, на субъядерном уровне силовые трубки локально организуют спонтанные флуктуации энергии пространства - времени, проявляя себя как вихрь "виртуальных" частиц. При приближении к планковской энергии масштаб проявления сильного взаимодействия постепенно выравнивается с масштабом гравитационного [Mulvey J.H. (ed). The Nature of Matter.-Oxford:Clarendon Press, 1981], а уровень концентрации энергии, необходимый для распада протона (образования Х-частиц) достигается в силовом вихре задолго до планковского радиуса. Как известно из классической теории, распад протона происходит с образованием позитрона и нейтрального пиона, который в свою очередь распадается на два фотона, порождающих две пары электрон-позитрон [Окунь Л.Б. Лептоны и кварки, М. Наука, 1990]. Оказавшись в электромагнитном поле КВС, электрон с позитроном движутся в противоположных направлениях, усиливая в свою очередь напряженность электромагнитного поля, порождающего основную вихревую систему. Таким образом, эффект резонанса проявляется уже на макроуровне и приводит к интенсивному самоиндуцированию вихря по принципу положительной обратной связи. При этом по мере повышения плотности образующихся позитронов часть из них не успевает вырваться из КВС и аннигилирует, столкнувшись с электронами. Элиминация свободных электронов и выделение избыточной энергии подпитывают резонансные явления и ведут к саморазвивающемуся процессу в патентуемом устройстве. Элементы рабочего тела устройства имеют возможность самоцентрирования относительно друг друга. Эта возможность достигается наличием внутренней структуры рабочего тела, описываемого в формуле устройства. Благодаря этой внутренней структуре, особенностям взаимного намагничивания и совместным вращательным движениям элементов конструкции, происходит взаимозахват и взаимоцентрирование, приводящие к возникновению и самоподдержанию процесса резонансного преобразования энергии квантового уровня. Посредством заявленной внутренней структуры элементов рабочего тела они совершают в пространстве совместные вращательные движения. Особенностью этого движения является то, что элементы ротора - ролики, помимо коллективного движения вокруг статора, вращаются еще и относительно собственной оси. В одном из вариантов конструктивного решения компоновки устройства элементы ротора объединены общим сепаратором, и запуск устройства осуществляется разгонным двигателем через вал отбора мощности, соединенный с сепаратором ротора. Статор в этом варианте компоновки стационарно закреплен на корпусе устройства и относительно него происходит вращение ротора. Пусковым двигателем плавно наращиваются обороты ротора устройства до момента саморазвивающегося (критичного) режима. Причины этого процесса описаны выше и они приводят к тому, что ротор устройства начинает самопроизвольно наращивать обороты. Это явление по сути аналогично цепным ядерным реакциям, только происходит без деления ядер и трансформации или разрушения рабочего тела. Критичный режим патентуемого устройства характерен двумя основными аспектами. Во первых, это самопроизвольное наращивание оборотов ротора устройства и, во вторых, это преобразование гравитационного поля, связанного со структурной поляризацией элементов рабочего тела устройства, которое сопровождается направленным когерентным гравитационным излучением. Механизм создания направленного когерентного гравитационного излучения в заявляемом устройстве состоит в следующем. Протон удерживает "танцующий" вокруг него электрон, взаимодействуя с ним посредством обменных фотонов








фиг. 12 - внутренняя структура статора, варианты намагниченности;
фиг. 13 - внутренняя структура элемента ротора и структура поперечных вставок;
фиг. 14 - внутренняя структура статора и ротора с полимерным наполнителем, варианты намагниченности и электрической поляризации;
фиг. 15 - внутренняя структура статора в макропакетном варианте;
фиг. 16 - внутренняя структура элемента ротора в макропакетном варианте;
фиг. 17 - внутренняя структура статора или ротора в микропакетном варианте. Показанный на фиг.2 однорядный энергетический модуль содержит статор 1, ротор, состоящий из магнитных роликов 2, соединенных общим сепаратором 3, через который передается вращательный момент с основного вала 4 устройства. Основной вал 4 устройства посредством обгонных муфт 5 связан с пусковым двигателем 6, выводящим устройство в режим самоподдержания вращения, и системой нагрузки устройства в виде электродинамического генератора 7, связанного механически с основным валом устройства. Вдоль ротора расположены электромагнитные преобразователи 8 с разомкнутыми магнитопроводами 9. Элементы ротора 2 - магнитные ролики, пересекая магнитопроводы и замыкая магнитный поток через электромагнитные преобразователи 8, наводят в них ЭДС, которая поступает непосредственно на нагрузку 10. Электромагнитные преобразователи 8 расположены радиально на периферии устройства в однорядном варианте и охватывают его в продольном направлении в многорядном исполнении устройства. Электромагнитные преобразователи 8 оснащены электрическим приводом 11 и обладают возможностью плавно перемещаться по направляющим 12. Для радиальной электрической поляризации на периферии устройства между электромагнитными преобразователями 8 устанавливаются сотовые электроды 13, имеющие с роликами 2 ротора воздушный зазор. Электроды подсоединены к высоковольтному источнику напряжения 14. В варианте генератора тепловой энергии используется возможность устройства непосредственно понижать энтропию установки и окружающей среды. В результате чего любой объект (тело, газ и т.п.), помещенный в поле действия устройства, понижает свою температуру на несколько градусов по Цельсию, тем самым обеспечивая разность тепловых потенциалов в любом энергетическом цикле. Также имеется возможность посредством вала 4 отбора мощности приводить в действие любые традиционные тепловые генераторы 15, например фрикционные масляные, водяные кавитационные и т.п. На фиг.2-7 изображены конструктивные варианты выполнения устройства для преобразования энергии квантового уровня и гравитационного поля в механическую энергию. В зависимости от функционального назначения устройства можно выделить несколько основных конструктивных вариантов:
1. Однорядное устройство, показанное на фиг.2 и фиг.3, состоит из одного кольца статора 1 и нескольких роликов ротора 2, расположенных аксиально вокруг статора, имеющих возможность вращаться относительно общей оси устройства, а также имеющих возможность вращаться вокруг собственной оси. Также относительно роликов ротора 2 может вращаться и статор 1. На фиг.3 позиция b показан металлический цилиндр, охватывающий элемент ротора - ролик 2, который может применяться во всех вариантах устройства. 2. N-рядное устройство, показанное на фиг.4, состоит из 3N, где N - целое число рядов однорядных статорно-роторных модулей фиг.3. Движение и взаимодействие этой системы аналогичны однорядному варианту. Весовые соотношения модулей A, B, C и т.д. отражены в тождестве GA = GB = GC. 3. Модульное устройство, показанное на фиг. 5, состоит из однорядных (фиг. 3) и/или N-рядных (фиг.4) статорно-роторных модулей, расположенных соосно. Динамика и взаимодействие отдельного модуля аналогичны описанному выше. Параметры системы в целом подбираются конструктивно, исходя из функционального назначения устройства. 4. Модульно-блочное устройство (фиг.6), соответственно, состоит из модульных устройств (фиг.3), расположенных в пространстве друг относительно друга. Параметры системы в целом подбираются конструктивно, исходя из функционального назначения устройства, и имеют возможность расположения в пространстве под любым, конструктивно необходимым углом

Магниты на основе железа, кобальта, никеля и алюминия;
Магниты из магнитотвердых спеченных материалов на основе сплавов кобальта с редкоземельными металлами;
Магниты из магнитотвердых спеченных материалов на основе сплавов неодим-железо-бор;
Магниты из магнитотвердых деформируемых материалов на основе сплавов железа, хрома и кобальта, подвергающиеся горячей или холодной пластической деформации. Для обеспечения работоспособности устройства соотношение параметров статора 1 и элемента ротора 2 (фиг. 10) выбирается таким образом, чтобы отношение диаметров статора - D и элемента ротора - d было целое число, равное или больше 12. Этим достигается резонансный режим между элементами рабочего тела устройства. На фиг. 11 изображено совместное расположение статора 1, элементов ротора - роликов 2 и принцип их взаимного зацепления. Между поверхностью статора и роликами организован воздушный зазор -

t1=t2

где N - число вставок по периметру ролика. Расстояние между роликами - k равно половине диаметра ролика фиг.11. Конструкция устройства включает основные технологические варианты:
1. Вариант модульной системы без полиамидного наполнителя может быть выполнен на основе магнитных материалов (фиг. 12, 13). На фиг. 12 изображен статор 1 устройства, имеющий форму толстостенного цилиндра, который собирается в стапеле из заранее намагниченных сегментов 20 и 21 или изготавливается монолитно. Направление вектора намагниченности BI сегмента 20 и вектора BII сегмента 21 может выбираться в соответствии с функциями устройства относительно использования его в качестве устройства для преобразования энергии квантового уровня и/или гравитационного поля. Внутренняя структура 22 статора 1 и варианты его общей намагниченности BI и BII также показаны на фиг. 12. Сверху и снизу цилиндра статора 1 расположены два обода поперечных вставок 19 с векторами намагниченности B, показанные стрелками. Они выполняются из редкоземельных магнитов (РЗМ) 23 (фиг. 13), сформованных с поли-


Максимальная магнитная энергия 25-30 кДж/м;
Коэрцитивная сила по индукции ~80 кА/м;
Остаточная индукция 0.9-1.2 Тл
2. Вариант модульной системы с полиамидным наполнителем может быть выполнен на основе анизотропных металлополимерных магнитов FeCo, РЗМ(Co) со связующим наполнителем из поли-


- подают электроэнергию на запускающий механизм 6 (фиг.2);
- раскручивают вал ротора 4 (фиг.2) до скорости, при которой исчезает необходимость в подводе внешней энергии;
- отводят вырабатываемую энергию посредством механического отбора мощности с помощью традиционных электрогенераторов 7, 15(фиг.2), механизмов и машин и/или системы электромагнитных преобразователей 8 (фиг.2);
- регулируют вырабатываемую энергию посредством механического отбора мощности с помощью традиционных электрогенераторов 7,15 (фиг.2), механизмов и машин и/или системы электромагнитных преобразователей 8 (фиг.2);
- регулируют скорость вращения ротора или роторов, статора или статоров и вырабатываемую энергию путем увеличения или уменьшения нагрузки электрогенератора и/или системы электромагнитных преобразователей и/или регулировкой скорости относительного вращения ротора или роторов, статора или статоров, а также с помощью регулировки высокого напряжения внешнего источника 14 (фиг. 2). Критический режим работы устройства фиксируется через питающую сеть пускового двигателя 6 (фиг.2), когда ток в цепи падает до значения холостого хода. Затем пусковой двигатель отключается с помощью электромагнитной муфты 5 и устройство становится полностью энергетически автономным. В этот момент уже фиксируется тяга устройства, вектор которой направлен по центральной оси ротора и статора. Через несколько секунд саморазгона ротор достигает рабочих оборотов и к электрогенератору 7 (фиг.2) плавно подключается нагрузка. После подключения нагрузки наблюдается устойчивый рост оборотов. Полная стабилизация оборотов ротора осуществляется выдвижными электромагнитными преобразователями 8, работающими на нагрузку 10 (фиг.2). При аварийном выходе из строя электромагнитного преобразователя включается дополнительный электрогенератор (на схеме не показан) и фрикционный блок теплового генератора 15, включенный в теплообменный контур. В рабочем режиме величина вектора тяги дополнительно регулируется путем подачи высокого напряжения на электроды 13 относительно статора 1 (фиг.2,9). Путем изменения величины и полярности приложенного высокого напряжения регулируют величину и направление вектора тяги, создаваемого устройством. Необходимо отметить, что устройство в том или ином виде обладает возможностью создавать тягу в осевом направлении. Вектор тяги имеет возможность менять свое направление в зависимости от направления вращения ротора/статора устройства. Управление тягой может осуществляться:
отбором мощности от устройства посредством механической, тепловой и электромагнитной нагрузки;
синхронным вращением статора относительно вращающегося ротора. Для этого предусматривается соосный механизм 18 (фиг.7) размещения статора 1 и элементов ротора 2 в корпусе устройства (в любом варианте конструктивного и технологического исполнения);
подключением высоковольтного источника питания 14 (фиг.9). Был собран лабораторный макет действующего устройства преобразователя энергии квантового уровня и гравитационного поля в механическую энергию. Его эскиз представлен на фиг. 2. Устройство имело ротор с роликами, выполненными из редкоземельных магнитов и помещенными в медные стаканы. Общий вес устройства составлял 120 кг. Устройство было размещено на стабилизированной платформе, обеспечивающей возможность только вертикального перемещения и измерения величины этого перемещения посредством индукционных датчиков. В рабочем режиме к электрическому генератору была подсоединена активная нагрузка в 6 кВт. При этом устройство обеспечивало устойчивую работу в течение продолжительного времени. В зависимости от направления вращения ротора менялось направление вектора тяги, что фиксировалось индукционным датчиком перемещений платформы. Изменение веса устройства при максимальной преобразуемой мощности в 6 кВт составляло +/-40% от общего веса установки. Изменением веса можно было управлять путем подачи высокого напряжения в 20 кВ на сотовые электроды, расположенные по периметру ротора.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14, Рисунок 15, Рисунок 16, Рисунок 17