Частотно-модулированный преобразователь с последовательно- параллельным резонансом
Частотно-модулированный преобразователь с последовательно-параллельным резонансом, в частности, для питания омической или индуктивной нагрузки, содержит транзистор, включенный последовательно между отрицательным электродом источника напряжения и первым выводом индуктора, схему импульсного генератора, первый конденсатор и выпрямительный диод, включенные в первой и второй параллельных ветвях соответственно между электродами эмиттера и коллектора транзистора, и второй конденсатор включен параллельно источнику напряжения с возможностью создания сглаживающей емкости для источника напряжения. Трансформатор, индуктор и конденсаторы составляют резонатор, работающий последовательно-параллельно с транзистором. Техническим результатом является повышение КПД преобразователя. 9 з.п. ф-лы, 6 ил.
Область техники Изобретение относится к частотно-модулированному преобразователю с последовательно-параллельным резонансом, в частности, для питания любых омических или индуктивных нагрузок, включая газоразрядные трубки, где коммутативные переключатели в форме транзисторов последовательно подключены между отрицательным электродом источника постоянного тока и первым выводом индуктора, где схема импульсного генератора предусмотрена между источником напряжения и управляющим электродом транзистора, и где второй вывод индуктора соединен с первичной обмоткой трансформатора.
Предшествующий уровень техники Последние годы наблюдается действенное уменьшение физических размеров источников энергии, некоторые из которых достигнуты увеличением рабочих частот. Теперь общеизвестные преобразователи квазиквадратных импульсов достигают рабочей области, предел которой лежит выше 0,5 MHz. Это делает возможным уменьшение большинства пассивных мощных компонент, таких как магнитные компоненты или конденсаторы, сравнивая для примера с переключателями для 20 MHz. Однако эти преобразователи были по большей части широтно-импульсными модулированными преобразователями, имеющими большие потери переключения в мощных полупроводниках, что ведет к уменьшению эффективности и, следовательно, к необходимости большего охлаждения, которое уменьшает возможности уменьшения физических размеров преобразователей. Для того чтобы увеличить эффективность преобразователей энергии для разновидностей манипулируемой перегрузки или большой нагрузки, например, когда используются как устройства питания для газоразрядных трубок, предложено специальное размещение схем для контролирования или избежания насыщения транзисторов переключения, как станет очевидным, например, из PCT заявки N WO90/01248 и GB-PS N 1378465. Более эффективное преобразование энергии при все более высоких частотах основывается на так называемом "переключении текущего нуля", где синусоидальное напряжение, которое может быть генерировано LC-резонансным контуром, соединенным или параллельно, или последовательно. Такие преобразователи называются "резонансными преобразователями". Преимущество использования синусоидального напряжения существенно уменьшает эти потери в мощных полупроводниках, так как переключения обычно имеют место при пересечении с нулем. Недостатком резонансных преобразователей является то, что при данном уровне энергии пиковый ток во много раз больше, чем пиковый ток широтно-модулированного преобразователя. При использовании полупроводников с более низким сопротивлением к проводимости, однако, возможно увеличить рабочие частоты свыше 1 MHz. Таким образом, может быть достигнута потенциальная яма плотности энергии свыше IW/cm3. Сейчас в таких преобразователях используют частотно-модулированный контроль в форме интегральной схемы, которая может быть использована в области свыше 1 MHz, с обозначением LD 405, поставляемая Дженнум Корпорейшн, Барлингтон, Онтарио, Канада. Использование этих схем контроля в частотно-модулированном преобразователе описано в заявке LD 405 в от Дженнум Корпорейшн, озаглавленной "Использование LD 405 в 125 W источнике питания резонансного режима". В конце его той же самой корпорацией представлена резонансная схема, воплощение которой, в принципе, показано на фиг. 1. Схема включает индуктор L, емкость C, резистор R и нагрузку RL. Перед индуктором L предусмотрен коммутативный переключатель S, например, в форме транзистора, который служит для передачи прямого тока от источника питания V к последовательному резонансному контуру LC. Сопротивление нагрузки RL потребляет ток из контура. Как только оканчивается резонансный процесс, переключатель S открывается и переход энергии от источника S к нагрузке RL прерывается. После заданного периода времени переключатель S снова закрывается, и процесс повторяется. Частота коммутации может быть изменена так, чтобы средняя мощность, рассеиваемая в нагрузке RL менялась. В практическом воплощении резонансный преобразователь такого типа работает с двумя коммутативными переключателями, каждый из которых обрабатывает соответственный полуцикл резонансного периода. Эти переключатели базируются на канальных МОП-транзисторах, каждый из которых сам управляется соответственным канальным МОП-транзисторным каскадом. Выходной каскад показанного воплощения базируется на выпрямительных диодах Шоттки. Однако в этом воплощении предыдущего уровня техники резонансного преобразователя трудно полностью исключить гармоники в резонансном напряжении и также трудно симметризировать полупериоды так, чтобы они получили одинаковое энергосодержание. В конце концов, в мощных переключателях и выходных диодах Шоттки все же останутся значительные потери. Сверх того, эта RC-цепь установлена параллельно силовому переключателю для того, чтобы задавить броски напряжения, и эти схемы демпфирования ведут к дополнительным потерям. Таким образом, эффективность уменьшается по меньшей мере на 25%; и даже, если выходной каскад используется без выпрямительных диодов, потери составят порядка 16%. В общих чертах можно говорить о преобразователях, которые обсуждались выше, и приборах предыдущего уровня техники того же самого типа, что конденсатор, соединенный параллельно с индуктивностью, а переключатель - последовательно с источником напряжения. К тому же нагрузка будет подсасывать энергию от резонансной схемы, которая может быть сделана в виде трансформатора. Эти устройства предыдущего уровня техники обычно сложны для обсчета и реализации вследствие ограничения в энергетическом содержимом резонанса. При избыточном отводе энергии от LC- цепи меняется частота и необходимы средства сложного электронного контроля для того, чтобы управлять переключением коммутативных переключателей так, чтобы установилось резонансное состояние цепи. При возникновении в таких цепях перегрузки ток коммутации транзистора неуправляемо возрастает и при отсоединении транзистора это может привести к переходным процессам, вызывающим необратимое повреждение преобразователя. Проблема, таким образом, состоит в том, что средства контроля, предназначенные для защиты транзистора, не работают в реальном времени и, таким образом, транзистор, то есть переключатель, подвергается внештатным нагрузкам. Как уже отмечалось, существенные потери все же присутствуют, так что КПД преобразователя не поднимается более 84%, без использования выпрямленного выхода. В заключение, патент США N 4613769 описывает схему транзисторного осциллятора, в котором конденсатор соединен параллельно с выводами вторичной обмотки трансформатора, последний действует в параллельном синусоидальном резонансе с конденсатором, в качестве первого средства формирования сигнала данной частоты, второе средство формирования сигнала состоит из другого конденсатора, соединенного в параллель с коллекторным и эмиттерным выводами транзисторного осциллятора и работает в последовательном резонансе с индуктивностью на удвоенной частоте. Раскрытие изобретения В основу данного изобретения положена задача создания резонансного контура без вышеупомянутых и других недостатков. Эта задача решается тем, что в соответствии с данным изобретением частотно-модулированный преобразователь, включающий конденсатор C1 первого последовательного резонанса и выпрямительный диод Д2, предусмотренные в первой и второй ветвях соответственно между электродами эмиттера и коллектора транзистора Q, конденсатора второго параллельного резонанса C3, сидящего на электродах источника напряжения и являющегося дополнительной сглаживающей емкостью источника питания; упомянутый конденсатор C3 подключен последовательно с индуктором L через диод Д2; где транзистор Q находится в высокоомном состоянии во время как последовательного, так и параллельного резонанса, а диод Д2 находится в проводящем режиме во время параллельного резонанса, заряжая конденсатор С3 выше напряжения источника питания, прежде чем транзистор Q переключится в низкоомное состояние, инициируя другой последовательно-параллельный резонанс будучи переключенным в высокоомное состояние; соотношение между напряжением на индуктивности UL и емкостью конденсатора С1 определяет частоту последовательного резонанса первой полуволны, напряжение на индуктивности UL и емкость конденсатора С3, определяет резонансную частоту второго полуцикла, каждый полуцикл резонансного периода поддерживается во времени транзистором Q в высокоомном состоянии, трансформатором Т, индуктором L и конденсаторами С1, C3, составляющими таким образом RCL- резонатор, работающий последовательно-параллельно с транзистором, добротность резонатора определяется по соотношению между напряжением индуктивности UL или напряжением конденсатора UC1 и UC3 соответственно и напряжением питания U; и чтобы нагрузка RG соединена между выводами первой вторичной обмотки S1 трансформатора Т так, чтобы нагрузка RG, соединенная последовательно с индуктором L, потребляла энергию и с индуктивности, и с источника постоянного напряжения в каждом полуцикле резонансного периода, транзистор таким образом работает последовательно с источником напряжения в первом полуцикле и параллельно с источником напряжения во втором полуцикле, все время выполняя дробление общей энергии, потребляемой нагрузкой RG. Дальнейшие особенности и преимущества очевидны из формулы изобретения. Краткое описание чертежей В дальнейшем изобретение поясняется конкретным вариантом выполнения со ссылками на сопровождающие чертежи, на которых: фиг. 1 изображает основную схему параллельного резонатора в соответствии с предыдущим уровнем техники; фиг. 2 - основную схему модулированного преобразователя с последовательно-параллельным резонансом в соответствии с данным изобретением, используемую с газоразрядной трубкой холодным катодом; фиг. 3 показывает часть модификаций преобразователя фиг. 2, используемую с газоразрядной трубкой термоэлектронного катода; фиг. 4a - 4c показывают соответственно кривую напряжения, измеренного на индуктивности преобразователя при нормальной нагрузке на выходе, при коротко замкнутом выходе, а также цикл резонансного напряжения при различных состояниях проводимости и проводимости нагрузки; фиг. 5 показывает практическое воплощение частотно-модулированного преобразователя, соответствующего изобретению и применяемого для возбуждения газоразрядной трубки термоэлектронного катода;фиг. 6 показывает практическое воплощение трансформатора более подробно и так, как предусмотрено в схеме фиг. 2. Вариант наилучшего осуществления изобретения
На фиг. 2 первый резонансный конденсатор С1 предусмотрен в параллель с электродами эмиттера и коллектора транзистора Q, который работает как коммутативный переключатель. Нагрузка RG предусмотрена последовательно с индуктором L, которая соединена с транзистором Q и конденсатором С1 соответственно. Второй резонансный конденсатор С3 насажен на электроды источника напряжения и соединен с индуктором L через диод Д2, диод Д2 соединен в следующую параллельную ветвь между электродами эмиттера и коллектора транзистора Q. Далее первичная обмотка P трансформатора Т соединена с индуктором L так, чтобы трансформатор Т, индуктор L и конденсаторы C1, C3 обеспечивали RLC-резонатор, работающий последовательно-параллельно с транзистором Q и с добротностью, которая, как хорошо известно, определяется соотношением между напряжением индуктивности UL или напряжениями конденсатора UC1 и UC3 и напряжением питания U. Нагрузка RG соединена между выводами первой вторичной обмотки S1 трансформатора Т и, следовательно, как упоминалось, соединена последовательно с индуктором L. Измерение резонатора может быть успешно сделано на базе кажущейся потребности энергии так, что резонатор или резонансный контур измеряется для кажущейся мощности, которая на 30% больше, чем требуемая мощность на выбранной рабочей частоте резонатора. Транзистор Q управляется при определенной частоте, которая не должна меняться в зависимости от нагрузки. Работа преобразователя, соответствующего данному изобретению, теперь должна быть объяснена более подробно. Транзистор Q управляется приблизительно квадратным импульсом. Когда транзистор находится в проводящем состоянии, ток течет через индуктивность L и трансформатор Т так, что они намагничиваются. Индуктор L сделан из катушки и сердечника, например, феррита с воздушным зазором. Когда транзистор Q прекращает проводить, обратная индукция индуктивности L вызывает заряд конденсаторов С1 и С3. Конденсатор C3, однако, имеет емкость, которая значительно больше, чем емкость конденсатора С1, а также будет заряжен в противоположной полярности. Трансформатор Т теперь питается током той же самой полярности, что и ток, проходящий через транзистор Q. Когда напряжение конденсатора С1 достигнет максимального значения, направление тока изменится на противоположное и конденсатор С1 разрядится на индуктор L трансформатор Т. После этого направление тока снова изменится на противоположное и индуктор L разрядит энергию на диод Д2, а трансформатор Т - на конденсатор C3. Транзистор Q снова станет проводящим, и процесс повторится. Процесс может быть описан как состоящий из 4 фаз. В фазе 1 транзистор Q является проводящим и ток течет в направлении IA через трансформатор T. В фазе 2 транзистор прекращает проводить, но благодаря тому факту, что индуктор L работает как контур, ток все еще течет в направлении IA (фиг.2) через трансформатор Т, одновременно с этим конденсатор C1 разряжается благодаря противоположной индуктивности L. В фазе 3 противоположная индуктивность индуктора L окончена и конденсатор C1 разряжается так, чтобы ток тек в конденсатор C3 и через трансформатор T в направлении IB (фиг. 2), в то время как индуктор L "заполнен". В фазе 4 индуктор L затем "опорожняется" через диод Д2 и конденсатор C3, так же, как трансформатор Т, до тех пор, пока транзистор Q снова станет проводящим. Необходимо отметить, что транзистор Q может быть переключен каждый раз, когда диод Д2 проводит и, следовательно, также при "нулевом" токе и напряжении. Отрицательное контриндукционное напряжение UL с индуктора L прибавляется к напряжению питания U и подается на первичную обмотку P трансформатора T, в то время как конденсатор C3 разряжается и U, и UL. Разгрузка энергии со вторичной обмотки S1 в нагрузку RG не происходит в той же самой фазе, когда в первичной обмотке P и, следовательно, может быть использована только часть резонансной энергии. Это обеспечит великолепное соотношение между током и напряжением, если преобразователь, соответствующий данному изобретению, широко используется в газоразрядных лампах. Так как транзистор Q работает только как пополнитель энергии, которой наполняется трансформатор T, и благодаря фазовому сдвигу диод Д2 уже освободит транзистор в тот момент, когда он снова переключится в вышеупомянутую фазу 4. Следовательно, преобразователь, соответствующий данному изобретению, достигает очень высокого КПД. Потери переключения значительно погашены, так как транзистор переключается на отрицательной фазе резонанса, когда диод Д2 проводит и когда транзистор Q отсоединен, напряжение принимается конденсатором C1. Транзистор Q, следовательно, работает только с напряжением, которое необходимо для поддерживания свойств индукционной кривой индуктора L. Если первая вторичная обмотка S1 короткозамкнута, импеданс трансформатора T уменьшится до нуля и фазовый сдвиг между индуктором L и трансформатором исчезнет. Вся энергия затем используется для поддержания резонанса, и потребление энергии преобразователем уменьшится до "нуля". Это говорит о том, что преобразователь защищен от коротких замыканий в любых отношениях. Если удалена нагрузка RG во вторичной обмотке S1, импеданс трансформатора увеличится, а перепад частоты затем приведет к расходу тока, так как транзистор Q переключится в неправильное время. Для предотвращения этого вторая вторичная обмотка S2 в трансформаторе использована и соединена с выпрямляющим мостом для того, чтобы вернуть часть энергии соответственно положительному и отрицательному электродам источника питания. В этом случае всегда имеется минимальный импеданс в трансформаторе T. Резонатор, в таком случае, будет работать в пределах данного диапазона, а энергия будет циркулировать между источником питания и вторичной обмоткой S2 через выпрямительный мост B, как показано на фиг. 2. Правильным заданием величины напряжения вторичной обмотки S2 могут быть минимизированы потери свободных колебаний и возможно обеспечить детектор (не показан), который предупреждает о возможности повреждения нагрузки RG, например повреждении газоразрядной трубки, для того, чтобы отсоединить схему импульсного генератора, которая присоединена к управляющему электроду транзистора Q. Поэтому транзистор Q прекращает наполнение резонатора. Если в качестве нагрузки на вторичном плече трансформатора T использована газоразрядная трубка термоэлектронного катода, это легко может быть сделано, как показано на фиг. 3, соединением выводов вторичной обмотки S1 с по меньшей мере одним конденсатором C6 на электродах K1, K2 газоразрядной трубки. Как известно, газоразрядные трубки с термоэлектронными катодами должны запускаться посредством предварительного нагрева электродов для того, чтобы обеспечить достаточную ионизацию газов в трубке и чтобы мог произойти разряд. Это достигается адаптацией вторичной обмотки S1 и конденсатора C6 к резонансной частоте трансформатора T с катодами K1, K2 в нагретом состоянии. Такая адаптация может быть определена эмпирически или измерением теплового сопротивления катода и добавлением его к импедансу. Пока катоды K1, K2 недостаточно разогреты, импеданс слишком низкий и большая часть тока от вторичной обмотки S1 используется для нагревания катодов. Только когда присутствуют условия для резонанса, напряжение увеличивается до уровня, который зажигает электроды. Когда установлен разряд между электродами K1, K2, конденсатор C6 не долго работает в качестве резонансного конденсатора, но тем не менее вносит вклад в определенное напряжение накала, которое удерживает электроды нагретыми, из-за чего импеданс формирователя ниже по сравнению с частотой. Кроме того, это достоинство, если затемнение используется уменьшением напряжения питания. Преобразователь в соответствии с данным изобретением может также использоваться с усиливающим постоянным током без сглаживания для прямого возбуждения газоразрядных трубок с коэффициентом мощности cos





Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7