Изобретение относится к металлургии, конкретнее к нагреву стали в сталеразливочном ковше при использовании тепла экзотермических окислительных реакций перед непрерывной разливкой. Технический результат заключается в повышении производительности и эффективности нагрева стали в ковше. Способ обработки стали в ковше включает подачу в ковш алюминия в виде проволоки с одновременной продувкой металла в ковше кислородом сверху через погружную фурму. Глубину погружения сопла фурмы изменяют и устанавливают по зависимости H = K
V
F
Q
q/T, где H - глубина погружения сопла фурмы, м; V - объем стали в ковше, м3; F - площадь зеркала стали в ковше, м2; Q - расход кислорода, м3/мин
т стали; q - расход алюминиевой проволоки, кг/т стали; T - температура стали в ковше в начале обработки, oC; K - эмпирический коэффициент, учитывающий физико-химические закономерности окисления алюминия, равный 6 - 375, т2
мин
oC/м7
кг. 1 табл.
Изобретение относится к металлургии, конкретнее к нагреву стали в сталеразливочном ковше, основанном на использовании тепла экзотермических окислительных реакций перед непрерывной разливкой.
Наиболее близким по технической сущности является способ обработки стали в ковше, включающий подачу в ковш алюминия, продувку металла в ковше кислородом сверху и нейтральным газом, предназначенной для непрерывной разливки.
В процессе обработки стали в ковше в металл подают алюминий в виде проволоки с линейной скоростью 5-10 м/с и с расходом 0,5-3,0 кг/т стали. После окончания подачи алюминиевой проволоки подают кислород через погружную фурму на глубину, равную 0,4-0,6 высоты уровня металла в ковше с расходом 0,18-0,32 м
3/мин

т стали в течение 1-12 мин. После окончания продувки кислородом металл продувают в ковше нейтральным газом с расходом 0,1-0,4 м
3/час

т стали в течение 3-6 мин (cм. патент РФ, N 2092576, кл. C 21 C 7/00, Бюл.изобр. N 28, 1997).
Недостатком известного способа является недостаточная производительность и эффективность процесса нагрева стали в ковше. Это объясняется нерегламентированной глубиной погружения сопла фурмы под зеркало стали в ковше в зависимости от технологических параметров процесса обработки стали. В этих условиях окислительные экзотермические реакции взаимодействия кислорода и алюминия протекают в неполной мере. Сказанное является следствием ухудшения кинетических условий подвода реагентов, в частности, алюминия к месту реакции.
Технический эффект при использовании изобретения заключается в повышении производительности и эффективности нагрева стали в ковше.
Указанный технический эффект достигают тем, что способ обработки стали в ковше включает подачу в ковш алюминия в виде проволоки с одновременной продувкой металла в ковше кислородом сверху через погружную фурму, а также изменение глубины погружения сопла фурмы.
Глубину погружения сопла фурмы изменяют и устанавливают по зависимости H=K

V

F

Q

q/T, где H - глубина погружения сопла фурмы, м; V - объем стали в ковше, м
3; F - площадь зеркала стали в ковше, м
2; Q - расход кислорода, м
3/мин

т стали; q - расход алюминиевой проволоки, кг/т стали; T - температура стали в ковше в начале обработки,
oC; K - эмпирический коэффициент, учитывающий физико-химические закономерности окисления алюминия, равный 6-375, т
2
мин
oC/м
7
кг.
Повышение производительности и эффективности нагрева стали в ковше будет происходить вследствие обеспечения необходимых кинетических и газодинамических условий протекания процесса окисления алюминия. Сказанное объясняется тем, что оба реагента одновременно будут подаваться и взаимодействовать в одном и том же локальном объеме ковша. При определении глубины погружения сопла фурмы одновременно учитывается ряд необходимых параметров: объем и площадь зеркала стали в ковше, а также расходы кислорода и алюминиевой проволоки.
Диапазон значений эмпирического коэффициента K в пределах 6-375 объясняется физико-химическими закономерностями окисления алюминия в стали в присутствии принудительно подаваемого в локальное место экзотермической реакции кислорода. При больших и меньших значениях не будет обеспечиваться величина погружения сопла фурмы, необходимая для оптимального повышения температуры стали в ковше перед непрерывной разливкой.
Указанный диапазон устанавливают в зависимости от емкости ковша и необходимой величины повышения температуры стали.
Анализ научно-исследовательской и патентной литературы показывает отсутствие совпадения отличительных признаков заявляемого способа с признаками известных технических решений. На основании этого делается вывод о соответствии заявляемого технического решения критерию "изобретательский уровень".
Ниже дан вариант осуществления изобретения, не исключающий другие варианты в пределах формулы изобретения.
Способ обработки стали в ковше осуществляют следующим образом.
Пример. После выпуска из конвертера стали химического состава, мас.%: C= 0,02-0,30; Si=0,02-1,0; Mn=0,10-2,0; Al
2O
3=0,02-0,10 в ковш соответствующей емкости последний доставляют на установку доводки металла (УМД). На УМД подают в ковш алюминий в виде алюминиевой проволоки диаметром 8-12 мм со скоростью 5-10 м/с с одновременной продувкой стали кислородом сверху через погружную фурму. После продувки кислородом сталь в ковше продувают нейтральным газом, например, аргоном с расходом 0,3-2,0 м
3/мин

т стали.
Глубину погружения сопла фурмы изменяют и устанавливают по зависимости H=K

V

F

q/T,
где H - глубина погружения сопла фурмы, м;
V - объем стали в ковше, м
3;
F - площадь зеркала стали в ковше, м
2;
Q - расход кислорода, м
3/мин

т стали;
q - расход алюминиевой проволоки, кг/т стали;
T - температура стали в ковше в начале обработки,
oC;
K - эмпирический коэффициент, учитывающий физико-химические закономерности окисления алюминия, равный 6-375, т
2
мин
oC/м
7
кг.
Вследствие указанных параметров погружения сопла фурмы под уровень зеркала металла в ковше обеспечиваются необходимые кинетические условия протекания процесса окисления алюминия и выделения тепла, при этом оба реагента одновременно подаются и взаимодействуют в одном и том же локальном участке в объеме ковша.
В таблице приведены примеры осуществления способа с различными технологическими параметрами.
В первом и пятом примерах не обеспечивается необходимый нагрев стали в ковше после ее обработки кислородом и алюминием вследствие малой глубины погружения сопла фурмы под уровень зеркала металла в ковше.
В оптимальных примерах 2-4 вследствие необходимых пределов погружения сопла фурмы под зеркало металла обеспечивается повышение температуры стали в ковше, достаточного для непрерывной разливки стали.
Применение изобретения позволяет повысить производительность и эффективность нагрева стали в ковше на 15-20%.
Формула изобретения
Способ обработки стали в ковше, включающий подачу в ковш алюминия в виде проволоки с одновременной продувкой металла в ковше кислородом сверху через погружную фурму, а также изменение глубины погружения сопла фурмы, отличающийся тем, что глубину погружения сопла фурмы изменяют и устанавливают по зависимости
H = K

V

F

Q

q/T,
где H - глубина погружения сопла фурмы, м;
V - объем стали в ковше, м
3;
F - площадь зеркала стали в ковше, м
2;
Q - расход кислорода, м
3/мин

т стали;
q - расход алюминиевой проволоки, кг/т стали;
T - температура стали в ковше в начале обработки,
oC;
K - эмпирический коэффициент, учитывающий физико-химические закономерности окисления алюминия, равный 6 - 375, т
2 
мин
oC/м
7 
кг.
РИСУНКИ
Рисунок 1