Способ получения бутен-2-диола-1,4
Описывается способ получения бутен-2-диола-1,4, который находит применение для получения некоторых важных средств защиты растений, фармацевтических средств и промежуточных продуктов. Способ осуществляют путем гидрирования бутиндиола на катализаторе, содержащем палладий и цинк. Процесс ведут на катализаторе, содержащем дополнительно медь или серебро, или их смесь. Технический результат - увеличение активности и избирательности катализатора и одновременно избежание использования токсических веществ при получении и применении катализаторов. 9 з.п. ф-лы, 2 табл.
Бутен-2-диол(1,4) (в дальнейшем именуемый "бутендиол") уже давно получают в крупнотехническом масштабе из бутин-2-диола(1,4) (в дальнейшем именуемого "бутиндиол") в соответствии со способом по Реппе. Он требуется для некоторых важных средств защиты растений, фармацевтических средств и промежуточных продуктов. При этом крайне важно получить как можно более чистый продукт гидрирования, поскольку необходимо избежать потерь продукта, а отделение перегонкой негидрированного бутиндиола и полученного в результате перегидрирования бутандиола возможно только большими техническими расходами.
Каталитическое гидрирование бутиндиола до бутендиола, как правило, производят периодически при помощи катализатора. При этом водород подают при температуре от 30 до 150oC и при давлении от 1 до 20 бар в емкость с мешалкой, содержащую раствор бутиндиола и катализатор. После поглощения стехиометрического количества водорода реакцию прекращают. Для катализаторов, в частности палладиевых катализаторов, сделано много предложений, некоторые из которых технически реализованы. Для достижения достаточной избирательности предлагались палладиевые катализаторы на сульфате бария с добавкой хинолина (см. патент DE N 1115238) или палладиевые катализаторы на окиси алюминия с добавкой окиси углерода (см. патент DE N 2619660), или палладиевые катализаторы на меди или на окиси алюминия с добавкой ацетата меди (см. патент GB N 832141). Однако растворимые добавки являются сложными в обращении и мешают при переработке. Добавка окиси углерода, как описано в патенте DE N 2619660, требует дополнительных технических расходов, поэтому ее также следует избегать. Хорошие результаты были достигнуты согласно данным патентов также при по мощи следующих катализаторов: 5% Pd/BaSО4 - DE N 2605241 5% Pd/Al2O3 с добавкой ацетата свинца - DE N 2818260 5% Pd/BaSO4 с добавкой нитрата меди - DD N 246986 Несмотря на использование катализаторов с высоким содержанием палладия для этих процессов гидрирования требовались длительные сроки гидрирования. В патенте DE N 2431929 применяются в качестве катализатора 0,5% палладия на окиси алюминия с добавкой цинка, кадмия, висмута и теллура. Катализаторы отличаются хорошей избирательностью, имеют, однако, недостаток содержания канцерогенных или токсических компонентов. Особой сложностью является применение сырого бутиндиола, используемого в процессе избирательного гидрирования без предварительной очистки. Этот материал со значением pH около 5 содержит метанол, формальдегид, муравьиную кислоту и пропаргиловый спирт. Кроме того, он также содержит компоненты катализатора, такие как медь и висмут из синтеза бутиндиола. От катализатора тем самым требуется также сравнительно высокая толерантость к исходному сырью, хотя известно, что как добавки меди (см. патент DD N 246986), так и добавки висмута (см. патент DE N 2431929) оказывают влияние на гидрирование. Несмотря на вышеуказанные известные решения имеется желание дальнейшего совершенствования способа избирательного гидрирования бутиндиола, а также применяемого для этого катализатора. При этом имеются, в частности, следующие комплексные или частичные задачи, к решению которых - в отдельности или в комбинации - относится настоящее изобретение. 1. При получении катализатора не должна возникать необходимость употребления токсических или канцерогенных веществ, таких как, например, соединения теллура или кадмия. 2. Должна быть достигнута как можно более высокая избирательность с целью минимизации потерь продукта, в частности, в результате перегидрирования и образования ацетала. 3. Должна быть достигнута высокая активность катализатора, чтобы уменьшить расход катализатора в пересчете на подвергаемое превращению количество бутиндиола. 4. Должны быть достигнуты беспроблемное обращение с катализатором и, в частности, хорошая фильтруемость. 5. Избирательное гидрирование должно быть возможным также при применении сырого бутиндиола (в частности, со значением pH 5). 6. Избирательное гидрирование должно быть возможным также в присутствии одного или нескольких из следующих примесей: метанол, формальдегид, муравьиная кислота, пропаргиловый спирт или же медь и/или висмут, которые могут иметься, например, в результате синтеза бутиндиола. 7. Инертность катализатора в отношении компонентов сырья. Эти комплексные или частичные задачи изобретения решают способами и катализаторами согласно определению в формуле изобретения. Предпочтительные варианты изобретения выходят из зависимых пунктов формулы изобретения, а также из нижеследующего описания и из примеров. Предлагаемый катализатор помимо палладия и цинка также содержит медь или серебро, по соображениям целесообразности, однако, не содержит кадмия. Относительно активных компонентов катализатор предпочтительно состоит из этих элементов (палладий + цинк + [медь и/или серебро]) и не содержит никаких дополнительных активных компонентов. Предпочтительным катализатором является палладиевый катализатор на носителе с вышеназванными активными компонентами. Все количества окисей металлов приведены в пересчете на соответствующий металл. Действительная структура может отклоняться от указанной. Согласно изобретению был найден способ получения бутен- 2-диола(1,4) избирательным гидрированием бутиндиола в присутствии палладиевого катализатора, заключающийся в том, что катализатор помимо палладия содержит элементы цинк и медь или цинк и серебро, или цинк и медь и серебро. Применяемые согласно изобретению в способе гидрирования бутин-1,4-диола до бутен-1,4-диола катализаторы на носителе содержат в своей каталитически активной массе, как правило, от 0,1 до 7 % палладия, предпочтительно от 0,1 до 4 % палладия, от общего веса катализатора. В качестве прочих каталитически активных элементов применяемый согласно изобретению катализатор кроме палладия содержит еще элементы цинк и медь или цинк и серебро, или цинк и медь и серебро. Применяемые согласно изобретению катализаторы, каталитически активная масса которых состоит из каталитически активных компонентов палладия, цинка и меди, кроме палладия в вышеприведенных количествах содержат два других элемента в количествах, соответствующих соотношению атомов палладия и цинка, в общем, от 10:1 до 1:4 и соотношению атомов цинка и меди, в общем, от 5:1 до 1:2. Применяемые согласно изобретению катализаторы, каталитически активная масса которых состоит из каталитически активных компонентов палладия, цинка и серебра, кроме палладия в вышеприведенных количествах содержат элементы цинк и серебро в количествах, соответствующих соотношению атомов палладия и цинка, в общем, от 10:1 до 1:4 и соотношению атомов цинка и серебра, в общем, от 5:1 до 1:2. Применяемые согласно изобретению катализаторы, каталитически активная масса которых состоит из каталитически активных компонентов палладия, цинка, меди и серебра, кроме палладия в вышеприведенных количествах содержат элементы цинк, медь и серебро в количествах, соответствующих соотношению атомов палладия и цинка, в общем, от 10:1 до 1:4, соотношению атомов цинка и меди, в общем, от 5:1 до 1:2 и соотношению атомов цинка и серебра, в общем, от 5:1 до 1:2. Применяемые согласно изобретению катализаторы являются катализаторами на носителе. В качестве носителей предпочтительно применяют носители низкой кислотности или основные носители. Примерами для преимущественно применяемых носителей являются окиси алюминия, карбонат кальция, окись магния, шпинель (MgAl2O4), сульфат бария, двуокиси титана или двуокись циркония. Можно использовать также смеси этих носителей для получения применяемых согласно изобретению катализаторов. В качестве носителя особенно предпочитают окись алюминия, в частности


Pd - 0,5
ZnO - 0,25
Al2O3 - Остаток
Катализатор В (Сравнительный пример). Повторяют метод получения катализатора А. Для пропитки употребляют смешанный раствор нитрата палладия, нитрата кадмия и нитрата цинка. Состав катализатора следующий, вес.%:
Pd - 0,5
CdO - 0,11
Al2O3 - Остаток
Катализатор Г. Повторяют метод получения катализатора А. Для пропитки употребляют смешанный раствор нитрата палладия, нитрата меди и нитрата цинка. Состав катализатор следующий, вес.%:
Pd - 0,5
CuO - 0,12
ZnO - 0,12
Al2O3 - Остаток
Катализатор Д. Повторяют метод получения катализатора А. Для пропитки употребляют смешанный раствор нитрата палладия, нитрата серебра и нитрата цинка. Состав катализатора следующий, вес.%:
Pd - 0,5
Ag2O - 0,11
ZnO - 0,12
Al2O3 - Остаток
Катализатор Е. Повторяют метод получения катализатора Г, однако для пропитки употребляют порошкообразный, осажденный карбонат кальция. Необходимое количество раствора для 5 кг носителя составляет около 2500 мл. Состав катализатора следующий, вес.%:
Pd - 0,5
CuO - 0,11
ZnO - 0,11
CaCO3 - Остаток
Катализатор Ж. Повторяют метод получения катализатора Г, однако для пропитки употребляют осажденную окись магния, имеющую зернистость от 100 до 300 мкм после уплотнения и просеивания. Состав катализатора следующий, вес.%:
Pd - 0,5
CuO - 0,10
ZnO - 0,10
MgO - Остаток
Испытание катализаторов
Испытания гидрирования производят в автоклаве малой емкостью с магнитной подъемной мешалкой при 100oC и 18 бар. В качестве исходного соединения употребляют 125 мл раствора сырого бутиндиола, к которому добавляют 150 мг катализатора. Расход водорода контролируют уменьшением давления в автоклаве; израсходуемый водород периодически дополняют. Из-за сложности установления конечного результата избирательного гидрирования (до бутендиола) в целом найдены слегка повышенные количества побочных продуктов чем в производственной установке, позволяющей более точное установление конечного результата процесса. Продукт гидрирования подвергают газохроматографическому анализу; результаты приводят в процентах, отнесенных к единице площади (площ.%). Количества головного погона не зависят от катализатора и заданы качеством сырого бутиндиола. Данные на продукт гидрирования сведены в таблице 1. Количества остатков определяют лишь для катализаторов Б, В и Г. В пересчете на 100 г продукта гидрирования они составляют соответственно:
для катализатора Б 17,5 г
для катализатора В 10,8 г
для катализатора Г 12,9 г. Результаты представляют собой средние величины, полученные из 5 испытаний. Результаты гидрирования в производственной установке
В техническом масштабе катализаторы Б, В и Г подвергают долговременному испытанию. Гидрирование бутиндиола осуществляют периодически в суспензии. На м3 сырого бутиндиола употребляют 1 кг катализатора. Устанавливают содержание побочных продуктов, указанное в отнесенных к единице площади процентах газохроматографического анализа (см. табл. 2). Эти данные подтверждают преимущества, вытекающие из применения предлагаемого катализатора Г.
Формула изобретения

РИСУНКИ
Рисунок 1, Рисунок 2