Рабочая среда лампы высокочастотного емкостного разряда
Изобретение относится к светотехнике и может быть использовано при создании и применении ламп высокочастотного разряда, излучающих в ультрафиолетовом диапазоне длин волн. Технический результат - увеличение мощности и эффективности работы лампы и увеличение времени жизни одной рабочей смеси высокочастотной лампы, содержащей пары йода, гелий, или ксенон, или их смесь. 1 табл.
Изобретение относится к светотехнике и может быть использовано при создании и применении эффективных ламп высокочастотного емкостного разряда, излучающих в ультрафиолетовом диапазоне длин волн.
Известны рабочие среды источников спонтанного излучения (ламп) в ультрафиолетовом диапазоне спектра, в которых в качестве рабочей среды используются галогены - пары йода [1]. Возбуждение лампы производится тлеющим [1] и высокочастотным [2] разрядами. В [1] используется смесь, состоящая из паров йода и буферного газа аргона. Непосредственный контакт электродов лампы тлеющего разряда с парами йода ускоряет процесс создания йодидов металлов и снижает время жизни одной порции смеси, поэтому смесь необходимо прокачивать и заменять на новую. Наиболее близкой по техническому решению, выбранной в качестве прототипа, является рабочая среда лампы с накачкой от высокочастотного генератора и содержащая пары йода [2]. Недостатками такой среды являются низкие мощности и эффективности излучения, а также малое время жизни одной рабочей смеси лампы при одинаковой начальной концентрации йода. Задачей изобретения является увеличение мощности и эффективности ультрафиолетового излучения в диапазоне короче 250 нм и увеличение времени жизни одной рабочей смеси лампы в отпаянном и квазиотпаянном режимах. Задача решается тем, что рабочая среда лампы емкостного высокочастотного разряда, содержащая пары йода, дополнительно содержит ксенон, или гелий, или смесь ксенона с гелием. Физика процессов ионизации в безэлектродной лампе высокочастотного емкостного разряда отличается от физики процессов ионизации лампы тлеющего разряда [4, 5]. В последнем случае ионизация определяется значением коэффициента вторичной эмиссии на металлических электродах, и зависит от материала электрода. При этом контакт галогена с металлическим электродом сокращает время жизни одной рабочей смеси. Существенными отличиями пробоя в безэлектродной лампе высокочастотного емкостного разряда является его независимость от материала электрода и тот факт, что электроны образуются только в газе и двигаются попеременно от одного электрода к другому. При этом концентрация и энергия электронов достаточна для возбуждения йода и буферного газа, что приводит к мощному спонтанному излучению атомарных линий йода. Увеличение выхода излучения при добавках к смеси легкого инертного газа гелия может быть связано с увеличением концентрации электронов в разряде и эффективной передачей энергии от возбужденных атомов гелия к йоду [4]. Увеличение эффективности свечения атомарных линий йода для смеси Xe - I2 может быть связано с наличием предиссоциативного терма молекулы XeI*, что приводит при диссоциации XeI* на Xe и I* к увеличению концентрации возбужденных атомов йода и далее, к увеличению интенсивности спонтанного излучения на атомарных линиях йода. В смесях, содержащих Xe и Не работают оба означенных механизма. Примеры исследования эффективности работы йодной лампы с использованием предлагаемой рабочей среды. Возбуждение рабочей среды осуществлялось в цилиндрической кварцевой трубке с внутренним диаметром 40 мм и длиной 15 см, у торцов которой на поверхность стекла накладывалась пара кольцевых электродов. Пропускание кварца в диапазоне длин волн испускаемого лампой излучения составляло не менее 85%. Внутренняя полость трубы посредством стеклянного крана сообщалась с вакуумным постом и системой напуска газа. Рабочая среда готовилась непосредственно в полости лампы. Предварительно некоторое количество йода, находящегося в кристаллическом состоянии, помещалось во внутреннюю полость трубы. Затем лампа откачивалась, обезгаживалась и далее в трубу напускался буферный газ. Давление паров йода в рабочей среде определялось величиной упругости паров йода, соответствующей температуре самой холодной зоны лампы при ее работе. Генератор накачки лампы высокочастотного емкостного разряда позволял создавать на электродах лампы разнополярные импульсы напряжения амплитудой от 1 до 5 кВ, частота которых могла варьироваться в диапазоне от 1 кГц и выше. Измерение интенсивности излучения в требуемом спектральном диапазоне производилось калиброванным фотодиодом ФЭК-22 СПУ и набором светофильтров с известными коэффициентами пропускания в различных спектральных диапазонах по известной методике [3]. Кроме того, снимался спектр излучения лампы, в частности, в диапазоне 200 - 600 нм с помощью малогабаритного монохроматора МУМ. Описанные ниже результаты распространяются на широкий диапазон частот импульсов накачки от десятков кГц до ГГц, пока будут работать указанные механизмы, увеличивающие выход излучения. В ходе эксперимента были определены интенсивности излучения в области

Формула изобретения
Рабочая среда лампы емкостного высокочастотного разряда, излучающая в ультрафиолетовой области спектра, содержащая пары йода, отличающаяся тем, что в рабочую среду добавлены ксенон, или гелий, или их смесь.РИСУНКИ
Рисунок 1
Похожие патенты:
Резонатор свч-прибора // 1477167
Изобретение относится к СВЧ-электронике и предназначено для использования в сверхмощных лазерах на циклотронном резонансе
Разрядник свч-коммутатора // 295157
Газоразрядное устройство // 282535
Изобретение относится к электротехнической промышленности и может быть использовано при производстве газоразрядных ламп
Способ получения ик-излучения // 2006101
Импульсная стробоскопическая лампа // 517082
Патент 417859 // 417859
Патент 406240 // 406240
Газоразрядный источник излучения // 334607
Рабочая среда лампы тлеющего разряда // 2151442
Изобретение относится к светотехнике и может быть использовано при создании и применении ламп тлеющего разряда, излучающих в ультрафиолетовом диапазоне длин волн
Изобретение относится к газоразрядной технике и может быть использовано при разработке и производстве коммутационных и защитных газонаполненных разрядников
Рентгеновская трубка // 2144240
Изобретение относится к области рентгеновской техники и может быть использовано в медицине, дефектоскопии, охранных системах (таможенных терминалах), а также в научных исследованиях
Способ получения фото-эдс // 2082254
Газовый наполнитель для защитного разрядника // 1695773
Изобретение относится к газоразрядной технике и может быть использовано при создании малогабаритных защитных разрядников с активными электродами с высоким потенциалом погасания
Газовый наполнитель для разрядника // 1602264
Изобретение относится к газоразрядной сильноточной импульсной технике Цель изобретения - повышение стабильности срабатывания разрядника и расширение диапазона рабочих напряжений разрядника, в