Холодильная установка
Холодильная установка снабжена перемычками с установленными на них запорными органами, дополнительными электродвигателями с клиноременными передачами и системами электропитания и запорными органами. При этом перемычки соединяют магистральные всасывающие и нагнетательные трубопроводы. Запорные органы установлены после места соединения перемычек и магистральных нагнетательных трубопроводов на трубопроводах, идущих от нижних ступеней к ресиверам верхних ступеней. Использование изобретения позволит улучшить регулирование холодопроизводительности установки и уменьшить энергозатраты на ее работу. 3 ил.
Использование: в холодильной технике.
Сущность изобретения: благодаря объединению магистральных всасывающих и нагнетательных трубопроводов различных систем охлаждения перемычками с запорными органами, применению компрессоров с автоматически регулируемой производительностью и их приводов от электродвигателей, изменяющих потребляемую мощность в зависимости от нагрузки на валу или трехскоростных электродвигателей, или же применения двух электродвигателей для привода одного компрессора, способных работать как по одному, так и в паре, использованию автоматической системы управления работой холодильной установки интенсифицируется процесс охлаждения, значительно сокращаются энергозатраты, уменьшаются строительная площадь компрессорного цеха, количество оборудования, трубопроводов, арматуры и автоматических приборов защиты. Изобретение относится к холодильной технике и может бытъ использовано в химической, нефте- и газоперерабатывающей промышленности. Известна схема автоматизированной холодильной установки, работающей на три температуры кипения хладагента to = -40oC, to = -30oC и to = -12oC. На каждую низкотемпературную систему охлаждения работает своя группа компрессорных агрегатов с индивидуальными промежуточными сосудами по схеме: низкая ступень - промсосуд - высокая ступень. На систему охлаждения с температурой кипения хладагента to = -12oC работает группа компрессорных агрегатов. Регулировка требуемых температур кипения хладагента по системам охлаждения осуществляется путем пуска и остановки компрессоров - регулирование двухпозиционное (1). Недостатками этой холодильной установки являются высокая энергоемкость, длительный выход установки на требуемый режим работы, большая площадь компрессорного цеха, увеличенное количество оборудования, трубопроводов, арматуры и автоматических приборов защиты. Известна более прогрессивная холодильная установка с двумя системами испарения на to = -40oC и to = -10oC. На каждую систему охлаждения работает своя группа компрессорных агрегатов. Общий промежуточный сосуд системы охлаждения -40oC соединен по паровой линии с циркуляционным ресивером системы охлаждения -10oC. Включение и выключение компрессоров низкой и высокой групп компрессоров - автоматическое в зависимости от заданных температур кипения - двухпозиционное регулирование (2). Недостатком данной холодильной установки является повышенное энергопотребление, длительность процесса охлаждения до выхода на требуемый режим работы при одном и том же количестве компрессоров. Целью изобретения являлась интенсификация процесса охлаждения, уменьшение энергозатрат при производстве единицы холода. Указанная цель достигается тем, что она дополнительно снабжена перемычками с установленными на них запорными органами, дополнительными электродвигателями с клиноременными передачами и системами электропитания и дополнительными запорными органами, причем перемычки соединяют магистральные всасывающие и нагнетательные трубопроводы, дополнительные запорные органы установлены после места соединения перемычек и магистральных нагнетательных трубопроводов на трубопроводах, идущих от нижних ступеней к ресиверам верхних ступеней, дополнительные электродвигатели соединены клиноременными передачами с валами электродвигателей компрессоров Сопоставительный анализ заявляемого технического решения с прототипом показывает, что предлагаемая холодильная установка отличается схемой подключения магистральных всасывающего и нагнетательного трубопроводов двух и более систем охлаждения, позволяющей работать компрессорам низкой ступени в одноступенчатом цикле и электроприводами компрессоров с автоматическим изменением потребляемой мощности в зависимости от нагрузки на валу компрессора, Таким образом, предлагаемая холодильная установка соответствует критерию изобретения "новизна". Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях при изучении данной области техники и, следовательно, обеспечивают данной холодильной установке соответственно критерий "существенные отличия". На фиг. 1 изображена схема холодильной установки; на фиг. 2 - структурная схема блока регулирования мощности электроприводов; на фиг. 3 - график работы электродвигателей. Холодильная установка содержит магистральные всасывающие трубопроводы 1, 2, объединенные перемычкой 3 через запорный орган 4. магистральные нагнетательные трубопроводы 5, 6, объединенные перемычкой 7 и вентилем 8, нагнетательный трубопровод 5 с вентилем 9, ресивер 10, из которого пары хладагента по трубопроводам 1 и 12 поступают на компрессоры 11 и подаются по нагнетательным трубопроводам 13, компрессор 14 из ресивера 15 по трубопроводу 16 отсасывают пары хладагента и нагнетают по трубопроводу 17, электродвигатели 18, 19 для привода одного компрессора низкой ступени и электродвигатели 20, 21 для привода компрессора высокой ступени. Холодильная установка работает следующим образом. При работе всех компрессорных агрегатов в одноступенчатом цикле (для быстрого понижения температуры кипения в низкотемпературных системах охлаждения при первоначальном пуске или высоких тепловых нагрузках) магистральные всасывающие трубопроводы 1, 2 объединены перемычкой 3 через открытый запорный орган 4, магистральные нагнетательные трубопроводы 5, 6 в свою очередь объединены перемычкой 7 через открытый запорный орган 8, а на магистральном нагнетательном трубопроводе 5 запорный орган 9 закрыт. В связи с этим пары аммиака из ресивера 10 поступают в компрессоры 11 по всасывающим трубопроводам 12 и подаются по нагнетательным трубопроводам 13, магистральному 5, перемычку 7 в магистральный нагнетательный трубопровод 6 высокой стороны холодильной установки. Компрессоры высокой ступени 14 всасывают пары аммиака из ресивера 15 через трубопроводы 2, 16 и нагнетают по трубопроводам 17, 6 в конденсаторы холодильной установки. При достижении температуры кипения хладагента в системах охлаждения, например, -20oC, запорный орган 9 открывается, а запорные органы 4, 8 закрываются и холодильная установка работает по обычной схеме двухступенчатой, а компрессоры 11, как бустеры. Поддержание требуемых температур кипения хладагента в системах охлаждения -35oC и при -10oC осуществляется компрессорами (поршневыми, винтовыми и др.) с автоматическим регулированием холодопроизводительности при использовании для их привода: электродвигателей, автоматически изменяющих потребляемую мощность в зависимости от нагрузки на валу компрессора; трехскоростных электродвигателей, автоматически изменяющих потребляемую мощность при изменении скорости вращения; двух электродвигателей для привода одного компрессора, работающих как по одному, так и в паре с соответствующим автоматическим изменением потребляемой мощности. Для примера рассмотрим работу холодильной установки с поршневыми компрессорами и приводами от двух электродвигателей для одного компрессора. Пуск компрессора 11 в работу осуществляется двумя электродвигателями 18, 19 по команде блока регулирования мощности электроприводов представленного структурной схемой фиг. 2. Блок управления и регулирования производительности компрессора 1 выдаст сигналы управления разгрузочными соленоидными вентилями, схема логического управления обрабатывает эти сигналы и дает команду на включение двигателей, реле времени 3, 6 создает задержку отключения двигателей, предотвращающую останов компрессора, возникающий при коммутации электродвигателей, блок коммутации и защиты электродвигателей от аварийных режимов 4, 5 (перегрузка; ток короткого замыкания, пропадание фазы, перегрев двигателя) дает сигнал на блок регулирования производительности 1 и переводит компрессор на более легкий режим работы или отключает оба двигателя. При понижении тепловой нагрузки на 30% автоматически включается разгрузка компрессора 11 на 30%, отключается электродвигатель мощностью 30 кВт и привод компрессора 11 осуществляется одним электродвигателем 18 мощностью 70 кВт. При понижении тепловой нагрузки до 70% по команде от блока управления и регулирования 1 автоматически запускается электродвигатель 19, а электродвигатель 18 отключается и потребляемая мощность составляет 30 кВт. При дальнейшем понижении тепловой нагрузки по команде блока управления и регулирования 1 оба электродвигателя 18 и 19 отключаются. Если же тепловая нагрузка повышается, то автоматическое регулирование осуществляется в обратном порядке. График работы электродвигателей описанных выше циклов работы холодильной установки, представлены на фиг. 3, из которого видна потребляемая мощность электродвигателями, N в кВт в течение определенного периода времени,









Формула изобретения
Холодильная установка, содержащая несколько систем охлаждения с ресиверами, магистральными всасывающими и нагнетательными трубопроводами, компрессорами с электродвигателями, отличающаяся тем, что она дополнительно снабжена перемычками с установленными на них запорными органами, дополнительными электродвигателями с клиноременными передачами и системами электропитания и дополнительными запорными органами, причем перемычки соединяют магистральные всасывающие и нагнетательные трубопроводы, дополнительные запорные органы установлены после места соединения перемычек и магистральных нагнетательных трубопроводов на трубопроводах, идущих от нижних ступеней к ресиверам верхних ступеней, дополнительные электродвигатели соединены клиноременными передачами с валами электродвигателей компрессоров.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3
Похожие патенты:
Газотурбогенератор // 2151971
Изобретение относится к устройствам для понижения давления в магистральных газопроводах и может использоваться для утилизации избыточной энергии газа
Изобретение относится к детандер-генераторным агрегатам и касается детандерных установок для производства электроэнергии при утилизации избыточного давления природного газа, транспортируемого в трубопроводах и может быть применено на газораспределительных станциях и газоредуцирующих пунктах
Холодильная установка // 2150640
Автономная система обогрева помещения // 2148756
Способ работы турбодетандерной установки // 2148222
Способ работы турбодетандерной установки // 2148218
Изобретение относится к способам утилизации избыточного давления природного газа
Автономное устройство охлаждения воздуха // 2148194
Изобретение относится к системам получения холода
Способ работы газотурбинной установки // 2145386
Изобретение относится к газотурбинным установкам и может быть использовано при создании наземных агрегатов для получения электричества и тепла с высокой эффективностью и при высоких экологических показателях
Турбохолодильник // 2144647
Изобретение относится к области холодильной техники, а именно к устройствам, предназначенным для охлаждения атмосферного воздуха, поступающего в салоны наземного транспорта, в производственные помещения горячих цехов, шахты, а также воздуха в хирургических операционных высокостерильных помещениях с сильным освещением и герметизацией для сохранения стерильности
Холодильная установка // 2154779
Изобретение относится к области холодильной техники и может быть применено для обеспечения работоспособности холодильных устройств различного назначения при использовании в качестве рабочего тела различных жидких и газообразных веществ
Пароэжекторная холодильная машина // 2154780
Изобретение относится к области холодильной техники с использованием пароэжекторных холодильных машин и предназначено для холодоснабжения и кондиционирования воздуха автономных стационарных и передвижных объектов
Пароэжекторная холодильная машина // 2154780
Изобретение относится к области холодильной техники с использованием пароэжекторных холодильных машин и предназначено для холодоснабжения и кондиционирования воздуха автономных стационарных и передвижных объектов
Холодильная установка // 2156413
Изобретение относится к холодильной технике и может быть использовано в системах кондиционирования воздуха, холодильниках и т.д
Изобретение относится к холодильной технике, а именно к способу работы паровой холодильной машины и конструкции паровой холодильной машины, оснащенной компрессором, и может найти применение во всех отраслях промышленности, где используется искусственный холод
Турбоагрегат универсальный // 2158398
Изобретение относится к холодильной технике, а более конкретно к устройству турбокомпрессоров, которые могут быть использованы для систем кондиционирования воздуха в транспортных установках, пищевой, нефтяной и химической промышленности, а также в металлургии
Турбоагрегат универсальный // 2158398
Изобретение относится к холодильной технике, а более конкретно к устройству турбокомпрессоров, которые могут быть использованы для систем кондиционирования воздуха в транспортных установках, пищевой, нефтяной и химической промышленности, а также в металлургии
Пароэжекторная холодильная машина // 2163705