Способ антифрикционной химико-термической обработки инструментальных сталей
Способ антифрикционной химико-термической обработки инструментальных сталей включает насыщение в плазме тлеющего разряда в азотуглеродной среде, содержащей, %: продукты термической диссоциации азодикарбонамида 99,70 - 99,95, йод - остальное. В качестве продуктов азодикарбонамида может быть использован порофор ЧХ3-21. Техническим результатом является интенсификация процесса химико-термической обработки и повышение износостойкости инструментов, изготовленных из инструментальных сталей. 2 табл.
Изобретение относится к металлургии, в частности к химико-термической обработке, а именно - к процессам нитроцементации инструментальных сталей в плазме тлеющего разряда.
Известны процессы нитрооксидирования стального инструмента в атмосферах термической диссоциации аммиачной воды при соотношениях аммиак 13-26%, вода 74-87% [1]. Время насыщения 20 - 120 мин. В результате этого формируется диффузионный слой глубиной до 12 мкм, состоящий из магнетита Fe3O4 и
Формула изобретения
1. Способ химико-термической обработки инструментальных сталей, включающий диффузионное насыщение в плазме тлеющего разряда в азотуглеродной среде, отличающийся тем, что насыщение проводят в среде, содержащей, %: продукты термической диссоциации азодикарбонамида 99,70 - 99,95; йод - остальное. 2. Способ по п.1, отличающийся тем, что насыщение проводят в среде, содержащей в качестве продуктов азодикарбонамида порофор ЧХЗ-21.РИСУНКИ
Рисунок 1, Рисунок 2
Похожие патенты:
Изобретение относится к способу обработки, по меньшей мере, одной детали из магнитомягкого материала согласно ограничительной части п
Изобретение относится к химико-термической обработке
Плазмообразующий газ // 1601138
Изобретение относится к области металлургии и может быть использовано для термической обработки сталей, преимущественно при плазменном упрочнении деталей машин и обрабатывающего инструмента
Способ ионного азотирования деталей // 1570338
Способ азотирования металлических изделий // 1095673
Изобретение относится к химико-термической обработке стального и твердосплавного инструмента и может найти применение в различных отраслях машиностроения, горной, строительной, металлообрабатывающей и станкостроительной промышленности
Изобретение относится к металлургии, а именно к химико-термической обработке металлов и сплавов, в частности к ионному азотированию в плазме тлеющего разряда, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей сложной конфигурации, режущего инструмента и штамповой оснастки
Изобретение относится к способу нанесения тонкопленочного покрытия на металлические изделия и может найти применение при изготовлении режущего инструмента, изделий триботехнического назначения, высоко нагруженных деталей машин и механизмов
Способ азотирования стальных изделий // 2362831
Изобретение относится к области металлургии, а именно к химико-термической обработке, в частности к азотированию стальных изделий, и может быть использовано в машиностроении для поверхностного упрочнения машин
Изобретение относится к области термообработки
Изобретение относится к машиностроению, в частности к способу комбинированной химико-термической обработки деталей машин. Способ комбинированной химико-термической обработки деталей машин из теплостойких сталей включает циклическую цементацию деталей и закалку. Перед циклической цементацией проводят предварительные термообработку и механообработку, включающие нормализацию при температуре 950°С, высокий отпуск при температуре 670°С, закалку от температуры 1010°С, высокий отпуск при температуре не менее 570°С и пластическую деформацию методом осадки при температуре не менее 700°С со степенью деформации 50…80%. Циклическую цементацию проводят с чередованием циклов насыщения и диффузионной выдержки, при этом осуществляют не менее 12 циклов продолжительностью не менее 30 минут. Количество циклов зависит от необходимой толщины диффузионного слоя, а соотношение времен насыщения и выдержки составляет от 0,1 до 0,2. После упомянутой цементации проводят высокий отпуск, закалку в масло, обработку холодом при температуре -70°С и трехкратный отпуск при 510°С. Затем осуществляют ионно-плазменное азотирование в диапазоне температур 480…500°С в течение не менее 10 часов при следующих параметрах: напряжение на катоде при катодном распылении - 900 В, в режиме насыщения - 400 В, плотность тока 0,20…0,23 мА/см2, состав газовой среды - азотоводородная смесь с 95% азота и 5% водорода, расход газовой смеси до 10 дм3/ч, давление в камере при катодном распылении - 13,3 гПа, при насыщении - 5…8 гПа. Обеспечивается повышение износостойкости приповерхностных слоев теплостойкой стали, формирующихся в результате цементации и азотирования, и увеличение долговечности узлов трения скольжения из материала с таким составом приповерхностного слоя. 1 пр.
Изобретение относится к способу получения упрочненного сплава, имеющего металлическую основу, в объеме которой диспергированы наночастицы, из которых по меньшей мере 80% имеют средний размер от 0,5 нм до 50 нм. Указанные наночастицы содержат по меньшей мере один нитрид, выбранный из нитридов по меньшей мере одного элемента-металла М, выбранного из группы, содержащей Ti, Zr, Hf и Та. Способ включает следующие последовательные этапы, на которых a) осуществляют плазменное азотирование основного сплава при температуре от 200°C до 700°C для введения в него внедренного азота, причем указанный основной сплав содержит от 0,1% до 1% по весу элемента-металла М и выбран из аустенитного, ферритного, ферритно-мартенситного сплава или сплава на основе никеля, b) проводят диффундирование внедренного азота в указанном основном сплаве при температуре от 350°C до 650°C и c) осуществляют выделение нитрида при температуре от 600°C до 900°C в течение от 10 минут до 10 часов с образованием указанных наночастиц, диспергированных в упрочненном сплаве. Обеспечивается получение сплава, упрочненного частицами нитрида. 28 з.п. ф-лы, 1ил.
Изобретение относится к области металлургии, в частности к химико-термической обработке изделий из инструментальных сталей. Для увеличения глубины азотируемого слоя за короткий промежуток времени, повышения износостойкости перетачиваемого инструмента, изготовленного из отожженной заготовки, инструмент нагревают в вакуумной камере в среде аргона при давлении 0,2-0,67 Па до температуры не ниже 450° и не выше Ac1-(50-70)°C с обеспечением ионной очистки поверхности, затем при указанной температуре нагрева осуществляют ионно-плазменное азотирование в плазме азота или смеси газов аргона и азота с концентрацией азота не менее 20% путем двухступенчатого вакуумно-дугового разряда, при этом сила тока дуги составляет (80-100)±0,5А, а сила тока дополнительного анода - (70-90)±0,5 А при подаче на инструмент напряжения смещения в диапазоне от -50 В до -900 В в течение 0,5-2 час, охлаждение ведут в камере, а закалку и отпуск проводят по стандартному режиму для данной стали с получением азотированного слоя глубиной 2-2,5 мм. 2 пр.
Изобретение относится к электрофизическим и электрохимическим способам обработки деталей, в частности к электроэрозионному легированию графитовым электродом и ионному азотированию поверхностей стальных деталей. Способ упрочнения поверхности термообработанной стальной детали включает операцию электроэрозионного легирования и операцию ионного азотирования, причем операцию ионного азотирования осуществляют до или после операции электроэрозионного легирования в течение времени, достаточного для насыщения поверхностного слоя детали азотом на глубину зоны термического влияния для предотвращения снижения в ней твердости. Операцию электроэрозионного легирования выполняют графитовым электродом по меньшей мере в два этапа со снижением энергии разряда на каждом последующем этапе. Первый этап легирования графитовым электродом проводят с энергией разряда 0,1-6,4 Дж и производительностью 0,2-4,0 см2/мин, а второй этап легирования графитовым электродом проводят с энергией разряда 0,1-2,83 Дж и производительностью 0,2-2,0 см2/мин. Обеспечивается повышение производительности без увеличения шероховатости. 3 ил., 3 табл.
Изобретение относится к линии изготовления азотированного листа из текстурированной электротехнической стали и к способу изготовления азотированного листа из текстурированной электротехнической стали с использованием упомянутой линии. Предложенная линия содержит зону азотирования для азотирования упомянутой полосы, зону охлаждения для охлаждения упомянутой полосы и зону нагрева для нагрева упомянутой полосы, расположенную перед зоной азотирования. Зона азотирования содержит расположенные напротив полосы положительные электроды для формирования тлеющего разряда и расположенные между положительными электродами и полосой отрицательные электроды для формирования тлеющего разряда. Между положительными и отрицательными электродами генерируется тлеющий разряд с образованием плазмы для азотирования полосы. В частном случае упомянутая линия выполнена с внутренней частью зоны азотирования, разделенной по ширине полосы на зоны для обеспечения раздельного контроля азотирования внутри каждой из разделенных зон. Указанный способ изготовления азотированного листа из текстурированной электротехнической стали осуществляют с использованием упомянутой линии, в котором после холодной прокатки и перед вторичным рекристаллизационным отжигом проводят непрерывное плазменное азотирование в тлеющем разряде полосы из текстурированной электротехнической стали с использованием упомянутой линии. С высокой точностью обеспечивается контроль степени азотирования, снижается время, необходимое для обработки, и получают улучшенные магнитные свойства по всей полосе. 3 н. и 12 з.п. ф-лы, 3 ил.