Шихтовой брикет для производства высококачественной стали и способ его получения
Изобретение относится к черной металлургии и может быть использовано в качестве металлошихты при выплавке стали в различных сталеплавильных агрегатах. Шихтовая заготовка имеет форму брикета и содержит компоненты в следующем соотношении мас.%: железо металлическое 63 - 75; оксиды железа 18 - 29; углерод 5,0 - 7,0; пустая порода остальное. Отношение углерода к кислороду оксидов железа больше или равно 0,8. Шихтовую заготовку получают путем нагрева железорудных материалов (ЖРМ) в присутствии восстановителя и брикетирования. Восстановление ведут до степени металлизации 75 - 85%. Перед брикетированием горячие восстановленные (ЖРМ) обрабатывают смесью природного газа с непредельными углеводородами, взятых в соотношении (1,85 - 3,15) : 1, и науглероживают их до содержания 5 - 7% углерода. В качестве непредельных углеводородов используют ацетилен. В качестве восстановителя используют углерод или углеродсодержащие материалы в виде сажи, угля, кокса, боя угольных футеровок или нефтяного кокса, или восстановительные газы. Технический результат - получение сравнимого по качеству с металлизированными окатышами шихтового брикета, стоимость которого не превышает стоимость металлолома, обладающего более высокими металлургическими свойствами за счет оптимизации соотношения в брикете углерода к кислороду. 2 с. и 4 з.п.ф-лы, 1 табл.
Изобретение относится к черной металлургии и может быть использовано в качестве металлошихты при выплавке стали в различных сталеплавильных агрегатах, преимущественно в дуговых сталеплавильных печах.
Известны шихтовые материалы для металлургического передела, такие как передельный чугун, железный (стальной) лом, металлизованные окатыши и брикеты, синтиком, карбид железа и др. Обладая определенными преимуществами, все они имеют определенные недостатки. Металлизованные окатыши получают с использованием различных восстановителей: газообразных, "твердых" или комбинированных: газ + твердый восстановитель (способы - Мидрекс, HyL SI-RN и др.) [1,2]. Одним из недостатков перечисленных способов является низкая агрегатная производительность - следствие высокой (более 90-95 %) степени металлизации выдаваемого ими продукта, что определяет высокую его стоимость. Другим их недостатком является малое содержание оксидов железа (не более 6 %) и недостаточное даже для довосстановления собственных оксидов железа количество углерода (не более 1,0-1,5%). При переплаве на сталь таких металлизованных материалов в шихту приходится добавлять оксиды железа, вдувать газообразный кислород и твердый углерод. Высокая стоимость металлизованных материалов (на 10-25 долл/т выше стоимости передельного чугуна) обуславливает и высокую стоимость стали, выплавленной с их использованием. Кроме высокой стоимости металлизованные окатыши имеют малые размеры кусков, высокую пористорть, что при их хранении приводит к уменьшению степени металлизации. Для увеличения размера кусков и повышения их плотности, с целью сохранения полученного в них содержания металлического железа, металлизованные окатыши подвергают брикетированию [3]. Благодаря высокому содержанию железа и низкому содержанию примесей брикеты применяются при производстве стали в любых агрегатах, в том числе в электропечах. Наиболее близким по технической сущности и достигаемому результату является шихтовый брикет, содержащий Feмет = 80-98%, оксиды железа 1-18%, углерод 0,1-1,9% и пустую породу 2-15% [4]. Однако высокая степень металлизации (89-98 %) этих брикетов предопределяет их высокую стоимость, поскольку восстановление оксидов железа до степени металлизации выше 75-85% протекает значительно медленнее, что удорожает стоимость получаемого продукта. Современная технология электроплавки предусматривает работу на вспененных шлаках для защиты футеровки стен и свода печи от перегрева электрическими дугами. Для обеспечения необходимого шлакового режима шихтовые материалы должны содержать достаточное количество оксидов железа и углерода. Как видно из химического состава брикетов, в них содержится от 1 до 18% железа в виде оксидов, а содержание углерода не превышает 0,1- 1,9%, что гораздо ниже стехиометрически необходимого для довосстановления собственных оксидов (более 2%). С целью компенсации недостатка углерода и улучшения эффективности процесса выплавки стали (сокращения периода расплавления, уменьшения расхода электроэнергии, электродов и др.) в шихту необходимо дополнительно вводить углеродсодержащие добавки, которые, как правило, содержат вредные (сера, фосфор) и нежелательные (зола) примеси. Желаемый технический результат - это получение шихтового брикета, сравнимого по стоимости с железным ломом, обладающего более высокими металлургическими свойствами по сравнению с известными за счет оптимизации в нем соотношения углерода и кислорода. Это достигается тем, что в известном шихтовом брикете для производства высококачественной стали, содержащем железо металлическое, оксиды железа, углерод и пустую породу, согласно изобретению указанные компоненты взяты в следующем соотношении (% мас.): железо металлическое 63-75, оксиды железа 18-29, углерод 5,0- 7,0, пустая порода остальное, при этом отношение углерода к кислороду оксидов железа больше или равно 0,8. Наиболее близким к заявляемому способу получения шихтового брикета является способ, включающий нагрев железорудных материалов в присутствии восстановителя, последующее восстановление до 89-99 % степени металлизации и брикетирование [4]. Однако этот способ не обеспечивает получение достаточно дешевой шихты, которая бы соответствовала по своему качеству требованиям современного электросталеплавильного производства. Желаемый технический результат - снизить затраты на восстановление брикета и получить более высокое содержание в нем углерода, обеспечив его оптимальное отношение к кислороду оксидов железа. Это достигается тем, что в известном способе получения шихтового брикета, включающем нагрев железорудных материалов в присутствии восстановителя, последующее восстановление до определенной степени металлизации и брикетирование, восстановление согласно изобретению ведут до степени металлизации 75-85%, а перед брикетированием горячие частично восстановленные железорудные материалы науглероживают до содержания в них 5-7% углерода путем обработки смесью природного газа с непредельными углеводородами, взятых в соотношении (1,85- 2,15):1 соответственно. В качестве непредельных углеводородов используют ацетилен, а в качестве восстановителя - восстановительные газы, углерод, взятый в виде сажи, или углеродсодержащие материалы в виде угля, кокса, боя угольных футеровок или нефтяного кокса. Выбранные пределы можно обосновать следующими факторами. При повышении содержания железа металлического сверх 75% не удается снизить затраты на его производство, а при Feмет менее 63% снижается качество брикета, что снижает и показатели электроплавки при его применении, а именно увеличивается время плавки и удельные расходы электроэнергии, электродов, огнеупоров и др. Содержание оксидов железа в шихтовом брикете в пределах 18-29% также определяется заданными пределами степени металлизации и богатством железорудного сырья. При степени металлизации равной 75% и содержании железа общего в железорудном сырье 68% содержание оксидов железа в шихтовом брикете составляет 29%, а при степени металлизации 85% - порядка 18%. Содержание углерода в шихтовом брикете определяется необходимостью довосстановления оксидов железа брикета и их количеством: 5% углерода в шихтовой заготовке требуется для довосстановления 18%, а 7% - для довосстановления 29% оксидов железа. Количество углерода в брикете взято с избытком на 10-20% против стехиометрически необходимого для восстановления оксидов до железа металлического и образования монооксида углерода. Относительно высокие содержания оксидов железа и углерода в шихтовом брикете обеспечивают при его переплаве протекание реакций восстановления оксидов железа при температуре 700oC и выше, получение вспененного шлака, раннее кипение ванны без дополнительной загрузки твердого углерода и вдувания газообразного кислорода. Предлагаемый способ получения шихтового брикета отличается от указанных выше тем, что процесс восстановления железорудных материалов завершается на степени металлизации 75-85%, когда содержание железа металлического в продукте достигнет 63-75%. Такой прием позволяет примерно в два раза увеличить производительность восстановительного агрегата и, следовательно, значительно уменьшить стоимость продукта. Другим существенным отличием предлагаемого способа является то, что после достижения содержания железа металлического в шихтовом брикете заготовки в пределах 63-75% горячий продукт с целью науглероживания его до содержания углерода 5-7% продувают смесью природного газа с непредельными углеводородами, например ацетиленом, в соотношении (1,85-2,15):1. Термическое разложение природного газа протекает по реакции: CH4+тепло ---> 2H2 + C. При этом из одного куб.метра метана образуется 0,54 кг углерода в виде сажи и два куб.метра водорода. Чтобы разложить куб.метр метана требуется 800 ккал тепла, а с учетом потерь тепла в окружающую среду и на нагрев природного газа до 850-900oC тепла требуется около 2000 ккал на куб. метр метана, то есть надо израсходовать 25% теплотворной способности природного газа. Непредельные углеводороды, например ацетилен (C2H2), разлагаются на углерод и водород с выделением тепла. При разложении 1 куб.метра ацетилена выделяется 2400 ккал тепла. Если науглероживание металлизованных окатышей (губчатого железа) проводить смесью природного газа с ацетиленом, взятых в соотношении (1,85-2.15):1, то металлизованные окатыши не охлаждаются, а содержание углерода в них может быть очень высоким, вплоть до 70% массы окатышей. При науглероживании металлизованных окатышей одним природным газом без добавки непредельных углеводородов температура в слое резко падает с 1000 до 400oC уже в первые 4-5 мин продувки, но достичь содержания углерода в металлизованных окатышах более 2% не удается. При науглероживании металлизованного продукта указанной выше смесью природного газа с ацетиленом, взятых в соотношении (1,85-2,15):1, температура в слое, продуваемом смесью, не снижается ниже 950oC, а содержание углерода в продукте уже за первые 3-4 мин продувки достигает 7-10%. Пример конкретного выполнения способа производства и применения предлагаемого шихтового брикета: Сырые железорудные окатыши


Формула изобретения
1. Шихтовый брикет для производства высококачественной стали, содержащий железо металлическое, оксиды железа, углерод и пустую породу, отличающийся тем, что он содержит указанные компоненты в следующем соотношении, мас.%: Железо металлическое - 63 - 75 Оксиды железа - 18 - 29 Углерод - 5 - 7,0 Пустая порода - Остальное при этом отношение углерода к кислороду оксидов железа больше или равно 0,8. 2. Способ производства шихтового брикета, включающий нагрев железорудных материалов в присутствии восстановителя, последующее восстановление до определенной степени металлизации и брикетирование, отличающийся тем, что восстановление железорудных материалов ведут до степени металлизации 75 - 85%, а перед брикетированием горячие, частично восстановленные железорудные материалы науглероживают до содержания в них 5 - 7% углерода путем обработки смесью природного газа с непредельными углеводородами, взятых в соотношении (1,85 - 2,15) : 1, соответственно. 3. Способ по п.2, отличающийся тем, что в качестве непредельных углеводородов используют ацетилен. 4. Способ по п.2, отличающийся тем, что в качестве восстановителя используют углерод, углеродсодержащие материалы или восстановительные газы. 5. Способ по любому из пп.2 и 4, отличающийся тем, что в качестве восстановителя используют углерод в виде сажи. 6. Способ по п. 4, отличающийся тем, что в качестве углеродсодержащих материалов используют уголь, кокс, бой угольных футеровок или нефтяной кокс.РИСУНКИ
Рисунок 1