Способ морской транспортировки газа трубопроводом
Авторы патента:
Изобретение используется в строительстве при прокладке морских трубопроводов. Трубопровод располагают между дном водоема и его поверхностью, придают нулевую плавучесть и фиксируют растяжками с балластными грузами и поплавками. Трубопровод монтируют из отдельных звеньев и соединяют муфтами с ограниченной угловой подвижностью. Направлено на упрощение прокладки подводных трубопроводов. 13 ил.
Изобретение относится к нефтегазовой промышленности и касается прокладки газопровода под водой, в частности морской, и транспортировки газа по этому трубопроводу.
Известен способ прокладки трубопровода по суше в обход морских берегов и транспортировки газа по этому трубопроводу, заключающийся в том, что трубопровод, состоящий из отдельных жестко соединенных между собой металлических труб, укладывают по длине магистрали вдоль линии побережья на жесткое основание на грунт, а газ пропускают по трубопроводу. Однако, известный способ имеет ряд недостатков. В частности, требуется трубопровод относительно большой длины. Трубопровод должен обходить труднодоступные, например скальные, участки, обходить густонаселенные территории и территории недружественных государств. Трубопровод через морские просторы между двумя географическими пунктами, например A и B, напрямую (фиг. 1) будет значительно короче сухопутного варианта и будет свободен от других его недостатков, присущих сухопутному варианту. В настоящее время известен способ морской прокладки трубопровода и транспортировки по нему газа с помощью трубопровода, выполненного из состыкованных между собой отдельных металлических труб, уложенные по дну моря. Этот способ описан в проекте "Голубой поток" и в статье "Россия готова начать прокладку газопровода в Турцию по дну Черного моря" (газета RU, "Независимая газета", N 205 (1530), четверг, 30.10.97, копия прилагается). Недостатком данного способа является то, что, как указывают проектанты, "в мировой практике отсутствует опыт укладки трубопровода на глубине 2000 м с протяженностью этого участка в 215 км". Это обусловлено сложностью проводимых на такой глубине водолазных работ. Например, на глубине в 2000 м из-за чрезвычайно большого давления воды в 200 технических атмосфер необходимо использование специальных механизмов, имеющих возможность стабильно функционировать в этих экстремальных условиях. Следует обратить внимание на то, что морское дно не гладкое и ровное, как футбольное поле, а имеет довольно сложный рельеф, относительно которого трубопровод должен быть выставлен. Данные вопросы еще не решены. Настоящее изобретение направлено на решение технической задачи по укладке трубопровода на относительно небольшой глубине с обеспечением его связи с морским дном при уравновешенно-вывешенном положении с учетом выталкивающей силы. Достигаемый при этом технический результат заключается в упрощении прокладки трубопровода под водой. Указанный технический результат достигается тем, что в способе морской транспортировки газа, в частности по кратчайшему пути между двумя береговыми пунктами, заключающемся в прокладке под водой трубопровода, образованного из герметично состыкованных отдельных металлических труб, и непрерывной подачи газа по этому трубопроводу, последний, выполненный из герметично состыкованных между собой и имеющих в месте стыка ограниченную угловую подвижность труб, погружают в морскую воду на глубину, превышающую максимальную осадку морских судов и не подверженную существенному влиянию шторма, и обеспечивают устойчивое положение трубопровода в воде над дном за счет его невесомости или нулевой плавучести, при этом невесомость или нулевая плавучесть по длине трубопровода обеспечивается за счет и тросовых растяжек, закрепляемых на отдельных участках трубопровода и с балластом на другом конце, опущенном на морское дно, и несущих на себе поплавки для обеспечения невесомости натяжения тросовых растяжек за счет создания подъемной силы. Указанные признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности существенных признаков, достаточной для получения требуемого технического результата. Так, размещение трубопровода на достаточно небольшой глубине в уравновешенно-вывешенном положении позволяет зафиксировать трубопровод относительно морского дна. При этом уравновешенное положение трубопровода обеспечивается выталкивающей силой. На фиг. 1 - вид на трубопровод в море между двумя береговыми пунктами; на фиг. 2 - внешний контур труб и ее заглубление в воде; на фиг. 3 - схема сил, действующих на погруженный в воду отрезок трубы, разрез А-А по фиг. 2; на фиг. 4 - схема для учета веса соединительных муфт; на фиг. 5 - пример конструкции соединительной муфты; на фиг. 6 - схема крепления тросовых растяжек с трубой и дном; на фиг. 7 - пример конструкции поплавка; на фиг. 8 - схема для определения действия растяжек на центр тяжести трубы; на фиг. 9 - схема расположения тросовых растяжек вдоль трубопровода; на фиг. 10 - расположение опор и схема натяжения цепочки для двухзвенного пролета;на фиг. 11 - то же, что по фиг. 9, для трехзвенного пролета;
на фиг. 12 - эпюра весовой нагрузки на одно звено цепочки внутри пролета;
на фиг. 13 - то же, что на фиг. 12, эпюра момента. В предлагаемом способе морской прокладки и транспортировки газа с помощью трубопровода 1 (фиг. 1) по кратчайшему пути между двумя береговыми пунктами A и B предлагается возможным проложить трубопровод на относительно небольшой глубине H, а именно, на глубине, большей, чем осадка подводной части крупных морских кораблей, и большей, чем глубина волн во время сильного шторма. Например, для акватории Черного моря эта глубина составляет 30-40 м. Далее в предлагаемом способе определяются условия, при которых трубопровод 1 будет находиться, подобно космическим аппаратам, в состоянии полной невесомости, то есть в уравновешенно-вывешенном положении, которое в морской практике называется нулевой плавучестью. Для этого рассмотрим баланс сил, действующих на отрезок трубы 2 (фиг. 2, 3), опущенной горизонтально в воду. Обозначим:
l - длина отрезка трубы;
r - внешний радиус трубы;
r1 - внутренний радиус трубы;

G - вес пустой трубы;
s1 - площадь торцевого внутреннего сечения трубы;
s0 - площадь торцевого внешнего сечения трубы;



Pв - вес воды в объеме трубы на глубине H;
F - вес отрезка трубы на глубине H;
Pг - вес газа в трубе. По закону Архимеда на тело в виде полой трубы 2, погруженной в воду, действует выталкивающая сила, которая численно равна весу воды, вытесненной трубой, и приложена к ее центру тяжести (см. Справочник по физике, Б.М.Яворский и др., "Наука", 1965, стр. 300). Результирующий вес рассматриваемого отрезка трубы будет:
F = G - Pв, (1)
где G = (s0-s1)l




Pв= s0l

Если труба полая, то полагая что в /2/ Pг = 0, согласно формул /2/, /3/ имеем:
G =




Pв=


а затем используя равенство /1/ и /4/, /5/, получаем результирующую силу
F =





Для невесомости любого по длине отрезка трубы необходимо иметь F = 0 или согласно /6/
Q = 0 (F = 0) (7)
С достаточно хорошим приближением, полагая, что величина


можем записать условие невесомости трубы в морской воде в форме величины ее диаметра, который согласно /6/ - /8/ будет:
D = 2r, r = 2



Пример 1. Стальная труба с толщиной стенок



D = 2




Pг= ls1

и согласно /1/, /6/, /10/, /2/ F =



Когда один участок трубы соединяется с другим при помощи соединительной муфты 3, то необходимо учесть вес /в воде/ q этой муфты (фиг. 4), тогда имеем
F =


Для приближенных расчетов, пользуясь, как указывалось, при малых толщинах труб равенством /8/ и полагая, что

F =






Полагая в /6/

F =




Оценим приближенно влияние изменения диаметра трубы на величину силы F. Пример 2. Возьмем диаметр трубы DF = 20 см и те же значения



G =


Pв= 10



F = 82,7





Сравнивая результаты двух примеров 1 и 2, заключаем, что
(DF - D)/D

Приближенное равенство /15/ нетрудно получить в общем случае, если полагать для двух диаметров, что один из них определяется по формуле /9/ и имеет место равенство /8/. Из приведенных примеров и равенства /15/ можно видеть, что увеличение диаметра трубы по сравнению с диаметром, обеспечивающим ее невесомость, создает некоторую подъемную силу /F < 0/, и труба, если ее не удерживаешь, начнет всплывать с глубины H до свободной поверхности, где H = 0. Поэтому, при желании иметь трубы большего диаметра, при их невесомости нужно, согласно /9/, увеличивать толщину












Q = -232 г/см, q = 10,5 г, Fп = -62,3 кг. Пример 4. Определим длину l1 троса, который при соединении с поплавком будет невесомым, и допустимую силу его натяжения N. Полагая, что у троса r = 0,2 см,


Допустимая сила натяжения определяется, исходя из допустимого напряжения


Из примеров 3 и 4 видно, что для невесомости троса на его длине 2000 м достаточно 5 поплавков, а для его натяжения можно использовать два дополнительных поплавка. Теперь определим, какие возникнут нагрузки в звеньях трубопровода, когда в некоторой его части возникнут неидеальные условия на глубине погружения: в частности, небольшая подъемная сила, зона неспокойной воды с подводными течениями и др. Вследствие этого на звенья участка цепочки будет действовать определенная распределенная по длине цепочки нагрузка, которую обозначим буквой q [кг/см] (см. фиг. 10). Под действием такой нагрузки цепочка сдеформируется (провиснет), и каждое звено повернется относительно соседнего звена на допустимый угол





или T = nql/(n-1)

где T - натяжение звена, находящегося вблизи опоры;
R - нагрузка на опору от двух звеньев, расположенных с разных сторон опоры. В частности, при n = 2 имеем T = 2ql/



M0 = ql2/8. (17)
Заметим, что в случае расположения в пролете L = 3l, не трехзвенной цепочки, а цельной сплошной балки, то у нее по середине пролета L возник бы максимальный момент M0= qL2/8 = 9ql2/8, то есть на порядок больше. Это доказывает преимущество цепочной системы для трубопровода. Пример 5. Определим суммарное напряжение




l = 50 м, q = 1 кг/м,





Тогда получаем приближенно момент инерции сечения Jx=







Здесь видно, что продольное натяжение балки мало влияет на суммарное напряжение балки, что подтверждает преимущество цепной схемы над схемой сплошной балки в пролете.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12
Похожие патенты:
Изобретение относится к прокладке подземных трубопроводов и может быть использовано при устройстве резервуаров для хранения газов и жидкостей
Утяжелитель для балластировки трубопровода // 2147352
Изобретение относится к области монтажа и эксплуатации трубопроводов, точнее к вспомогательным устройствам для трубопроводной сети, и предназначено для балластировки трубопроводов, проходящих через болота, обводненные участки пойм и рек
Изобретение относится к строительству и может быть использовано при ремонте подземных трубопроводов
Способ и устройство для вытягивания трубы, уложенной в землю или подлежащей укладке в землю // 2144638
Изобретение относится к строительству и используется при вытягивании трубы, уложенной в земле и/или подлежащей укладке в землю, к траншее, находящейся ниже поверхности земли, причем из траншеи имеется доступ к этой трубе
Кран-трубоукладчик // 2144156
Изобретение относится к машиностроению и касается создания кранового оборудования для строительства трубопроводов
Изобретение относится к строительству и используется при извлечении пустотелого объекта, находящегося в земле, например свинцовой трубы, оба конца которой доступны
Способ ремонта перехода трубопровода // 2142090
Изобретение относится к ремонту трубопроводов на переходах через балки, овраги и малые водотоки
Изобретение относится к строительству и используется при строительстве и ремонте трубопроводов
Изобретение относится к строительству и используется при сооружении и ремонте подземных трубопроводов
Способ балластировки подземного трубопровода // 2153119
Изобретение относится к строительству и ремонту магистральных трубопроводов в обводненных грунтах и может найти применение при прокладке магистральных трубопроводов
Изобретение относится к строительству, а именно к устройствам для защиты трубопроводов, расположенных на оползневых склонах
Контейнерный утяжелитель трубопровода // 2153619
Изобретение относится к строительству и может найти применение при строительстве и реконструкции подземных трубопроводов
Способ бестраншейной замены трубопроводов и устройство для бестраншейной замены трубопроводов // 2156909
Изобретение относится к строительству и используется при замене подземных трубопроводов
Изобретение относится к области трубостроения
Изобретение относится к области строительства, а именно к устройству защитных сооружений, предохраняющих трубопроводы от давления оползневого грунта
Изобретение относится к строительству и используется при ремонте трубопроводов, уложенных в слабых, переувлажненных грунтах, болотах и сыпучих песках