Способ получения порошкообразного металлического плутония из компактного металлического плутония
Авторы патента:
Использование: получение плутония, используемого в ядерной технике. Процесс гидрирования осуществляют одновременно с механоактивацией при температуре 280 - 300oC и давлении водорода 300 - 330 мм рт.ст., затем осуществляют дегидрирование при перемешивании и температуре 450 - 500oC и вакууме 25 - 30 мм рт.ст. Процесс механоактивации проводят до образования частиц гидрида плутония размером 10 - 100 мкм. Результат изобретения - сокращение времени процесса, получение более мелкого порошка плутония. 1 з.п. ф-лы, 2 табл.
Изобретение относится к технологии получения радиоактивных веществ.
Металлический порошок плутония можно использовать для получения различных соединений плутония, в частности диоксида, нитрида, фторида и карбида. В связи с сокращением стратегических вооружений в России и США высвобождаются большие количества компактного оружейного плутония, который как и диоксид плутония может быть использован для производства тепловыделяющих элементов для энергетических атомных реакторов. Фторид плутония, совместно с фторидами урана, бериллия, циркония и пр., может найти применение для приготовления топливной композиции жидкосолевых реакторов, которая представляет собой смесь, имеющую температуру плавления 773oC. Интерес к экспериментам с расплавносолевыми композициями проявляют США, Япония, Швеция. Получить эти вещества из компактного плутония достаточно трудно и требует неоправданно много времени. Порошкообразный металлический плутоний может быть получен способом последовательного 3-х кратного гидрирования и дегидрирования массивных порций металлического плутония. Гидрирование металлического плутония осуществляется взаимодействием плутония с водородом, скорость подачи которого меньше критической скорости, при которой начинается плавление металла, как результат нагрева при образовании гидрида плутония (патент США N 1373896, C 01 G, 56/00). К недостаткам способа относятся значительная продолжительность процесса за счет 3-х кратного гидрирования и дегидрирования гидрида плутония, которое, в частности, соответствует образованию крупнодисперсного порошка металлического плутония 200 - 300 мкм. Известен способ получения тонкоизмельченного химически активного порошка диоксида плутония (патент США N 5419886, C 01 G 56/00). В этом способе для приготовления ядерного топлива металлический плутоний обрабатывают H2, C, N2, получая промежуточные соединения гидрида-, карбида- или нитрила плутония. Промежуточные соединения окисляют для получения порошка оксида плутония, который смешивают с порошком оксида U, получая топливную смесь. В качестве прототипа принят способ получения порошкообразного плутония (в статическом режиме) прямым гидрированием компактного плутония газообразным водородом, при температуре 150 - 200oC с последующим разложением гидрида плутония в вакууме при температуре 400oC (Справочник Плутоний, под редакцией О. Вика, т. 1, Москва, Атомиздат, 1971 г.). К недостаткам способа следует отнести следующее. Осуществление процессов гидрирования компактного Pu и дегидрирования PuHx в статическом режиме связано с продолжительностью каждой операции (в том числе загрузки и выгрузки продуктов) и процесса в целом; невозможно в данном случае сократить время индукционного периода при гидрировании Pu, которое в зависимости от массы образца может составлять от минут до нескольких часов; в процессе гидрирования компактного Pu получаются крупнодисперсные черные металлоподобные частицы, а это требует дополнительно операции измельчения. Сущность предлагаемого изобретения заключается в следующем. Получение тонкодисперсного порошкообразного металлического плутония осуществляется в специальном аппарате и заключается в однократной обработке компактного плутония водородом, очищенным от примесей при температуре 280 - 300oC, давлении 300 - 330 мм рт.ст. и одновременной механоактивации в течение 90 мин и последующим дегидрированием порошкообразного PuH2,7 в реакционной зоне при температуре 450 - 500oC и вакууме 25 - 30 мм рт.ст. при перемешивании в течение 60 - 65 мин. Данный способ дает возможность получения химически активного порошкообразного металлического плутония, который можно легко и быстро перевести в соответствующие химические соединения (по сравнению с реакциями получения их из компактного плутония) PuO2, PuF3, PuF4, PuN, PuC и др. Важными отличительными признаками предлагаемого способа являются: - сокращение времени индукционного периода и продолжительности гидрирования компактного плутония; - получение порошкообразного PuH2,7 более тонкого гранулометрического состава 20 - 100 мкм за счет механоактивации процесса; - сокращение времени дегидрирования PuH2,7 и получение тонкодисперсного металлического порошка Pu за счет перераспределения и перемешивания в реакционной зоне. Первая серия опытов по получению порошкообразного металлического плутония была проведена в статических условиях. Пример 1. Для гидрирования были взяты два образца компактного металлического плутония массой 395,6 г и 397,4 г, которые были загружены в реактор. Реактор был промыт 3-х кратным объемом аргона, герметизирован и подключен к рессиверу, заполненному водородом, очищенным от следов влаги и кислорода. Давление в реакционной зоне составляло 300 мм рт.ст. Реактор с образцами нагревался со скоростью 3oC в минуту. При температуре 280oC началось быстрое падение давления в системе. Через 180 мин падение давления в системе практически полностью прекратилось. Дальнейшая выдержка в течение 15 мин не привела к изменению давления. Последующий нагрев до 350oC привел к незначительному росту давления за счет теплового расширения газа. Экспозиция материала при температуре 350oC в течение 1 часа не привела к изменению давления в системе. Затем реактор был охлажден и продут аргоном. Гидрированные образцы из компактного металлического плутония представляли собой частицы металлоподобного серовато-черного цвета с размером от 20 до 200 мкм. Масса гидрированных образцов составила 400,0 г и 401,8 г. Полученный продукт по изменению массы и поглощению объема водорода во время реакции представляет гидрид состава PuH2,7. Рентгенофазовый анализ показал, что основная фаза имеет гранецентрированную кубическую решетку типа флюорита с параметрами a = 0,5314 нм и следы PuH3 с гексагональной решеткой и параметрами a = 0,378 и c = 0,676 нм. Дегидрирование обеих образцов проводили при следующих условиях 400 - 450oC и вакууме 0,38 - 0,76 мм рт.ст. при последующей продувке аргоном и охлаждении образцов до комнатной температуры. Масса образцов уменьшилась до первоначального веса 395,65 г и 397,647 г. Внешний вид порошка изменился - металлический блеск стал интенсивнее. Рентгенофазовый анализ указал только на фазу



Формула изобретения
1. Способ получения порошкообразного металлического плутония из компактного плутония путем его гидрирования и дегидрирования PuHx, отличающийся тем, что процесс гидрирования осуществляют одновременно с механоактивацией при температуре 280 - 300oC и давлении водорода 300 - 330 мм рт.ст., а дегидрирование при перемешивании и температуре 450 - 500oC и вакууме 25 - 30 мм рт.ст. 2. Способ по п.1, отличающийся тем, что процесс механоактивации проводят до образования частиц гидрида плутония размером от 10 - 100 мкм.РИСУНКИ
Рисунок 1, Рисунок 2
Похожие патенты:
Изобретение относится к ядерной технологии и может быть использовано для дезактивации и компактирования радиоактивных металлических отходов, образующихся при регенерации ядерного топлива из тепловыделяющих сборок (ТВС) атомных реакторов и при демонтаже оборудования АЭС и радиохимических заводов
Изобретение относится к области охраны окружающей среды и предназначено для цементирования твердых радиоактивных отходов, содержащих мелкозернистые материалы
Изобретение относится к технологии переработки отходов, содержащих ценные элементы или представляющих экологическую опасность, и может быть применено для переработки отходов тугоплавких металлов VI группы и рения
Изобретение относится к получению отвержденных отходов, содержащих иод - 129 с большим периодом полураспада
Способ дезактивации радиоактивных материалов // 2142172
Изобретение относится к дезактивации радиоактивных материалов
Изобретение относится к утилизации атомных подводных лодок (АПЛ), а также судов, танков, ториц и других крупногабаритных объектов
Способ отмывки оборудования от натрия // 2138867
Изобретение относится к атомной энергетике и может быть использовано для растворения и удаления недренируемого натрия из подлежащего ремонту или снятого с эксплуатации оборудования реакторов с натриевым теплоносителем
Способ удаления радиоактивных загрязнений // 2137232
Изобретение относится к области ядерной техники, в частности, к способам удаления радионуклидов с металлических поверхностей
Способ получения обогащенного ильменита // 2145270
Изобретение относится к области производства основных компонентов защитно-легирующих электродных покрытий на сварочных электродах
Способ изготовления порошка феррита бария // 2089349
Изобретение относится к области получения ферритовых порошков, а именно к способам получения высокодисперсного порошка гексагонального феррита бария и ферритов на его основе пластинчатой формы, который используется при изготовлении носителя высокоплотной магнитной записи, эластичных высокоэнергетических постоянных магнитов, а также СВЧ-устройств
Изобретение относится к порошковой металлургии, в частности к способам получения порошков тугоплавких неорганических соединений, а именно боридов переходных металлов, синтезом в режиме горения, которые могут быть использованы в авиационной, станкостроительной и обрабатывающей промышленности, а также в цветной металлургии
Изобретение относится к области порошковой металлургии, а именно к способам получения карбидов и композиций на их основе для получения твердых сплавов как из традиционного сырья, так и отходов
Способ получения порошка диоксида циркония // 2078429
Изобретение относится к порошковой металлургии, а именно к способам получения тугоплавких порошковых композиций на основе карбида вольфрама из традиционного и вторичного сырья тяжелых и твердых сплавов
Изобретение относится к порошковой металлургии, в частности к способам получения порошков композиционных материалов на основе диборидов титана, и может быть использовано для изготовления наплавочных материалов и для получения материалов инструментального и конструкционного назначения
Изобретение относится к получению карбидов и может быть использовано в твердосплавной промышленности, производстве шлифовальных и полировальных материалов, в металлургической и инструментальной промышленности
Способ получения титанового порошка // 2043873
Изобретение относится к порошковой металлургии и может быть использовано для получения широкой номенклатуры порошков, обладающих такими свойствами, как тугоплавкость, жаропрочность, жаростойкость, износостойкость, коррозионная стойкость и т.п