Способ очистки сточных вод
Изобретение относится к физико-химической очистке сточных вод промышленных предприятий, в частности стоков красильно-отделочных производств. Предложенный способ очистки сточных вод включает пропускание их через слой волокнистого фильтрующего ионообменного сорбционного углеродно-волокнистого материала с заданной скоростью фильтрации, при этом в качестве углеродно-волокнистого материала берут предварительно обработанную кислотой и/или прокаливанием углеродно-волокнистую ткань "Бусофит" либо "Вискумак", далее сточные воды дополнительно очищают озонированием, выбирая расходы озона, определяемые предложенными зависимостями. После озонирования практически очищенные сточные воды можно дополнительно очистить на активированном угле. Способ обеспечивает высокую степень очистки. 2 c. и 7 з.п. ф-лы, 2 табл.
Изобретение относится к физико-химической очистке сточных вод промышленных предприятий, в частности стоков красильно-отделочных производств, содержащих различные красители, используемые, например, в текстильной промышленности, художественно-прикладном производстве и т.д.
Многие высокомолекулярные органические вещества, содержащиеся в сточных водах, образуют органические кислоты, которые являются слабыми электролитами, частично ионизирующимися в водных растворах. К ним же относятся красители, используемые, в частности, в текстильной промышленности и содержащиеся в стоках текстильных производств. Кроме того, они содержат поверхностно-активные вещества (далее ПАВ), также являющиеся высокомолекулярными соединениями, органические загрязнения, шлихтующие и другие препараты [1]. Известен способ очистки высокоцветных сточных вод путем обработки их озоном с последующей сорбцией на активированном угле и повторной обработкой озоном [3]. Данные сточные воды содержат лигнин, его производные, гуминовые и фульвокислоты, продукты осмоления сахаров, а также природные пигменты. На первом этапе обработки озоном происходит разрушение высокомолекулярных соединений без изменения их гидрофильности. Частично обесцвеченные (на 18-20%) сточные воды подают для очистки на сорбционные фильтры с загрузкой активированным углем и со скоростью фильтрации 4-6 м/ч. Размеры образовавшихся высокомолекулярных соединений становятся соизмеримы с размерами пор активированного угля, и поэтому емкость последнего по веществам, обуславливающим цветность сточных вод, возрастает. Такой сорбент способен очистить большее количество сточных вод (сорбционный цикл увеличен до 15-20 суток) при снижении цветности только на этом этапе до 70%. Далее, для окисления веществ, прошедших фильтрат, сточные воды повторно обрабатывают озоном. При этом также снижается цветность еще на 6-8%. Недостатком известного способа является то, что для достижения высокой степени очистки высокоцветных сточных вод (до 94-98%) необходим довольно большой суммарный расход (доза) озона (18-33 мг/л). Нами выяснено, что при применении данного известного метода [3] для очистки окрашенных сточных вод красильно-отделочных производств наблюдаемый эффект очистки, в частности обесцвечивания, значительно ниже. Известны ионообменные волокна, обладающие высокоразвитой поверхностью, причем их обменная емкость не снижается при многократных циклах регенерации кислотами и щелочами [4]. Известно, что при применении волокна в качестве катализатора может быть достигнуто снижение дозы озона [5]. Однако предварительная обработка воды волокном в течение 3-4 ч с последующим озонированием показала некоторое увеличение расхода озона при уменьшении времени озонирования, что свидетельствует о наличии в воде дополнительных веществ органического характера, внесенных волокном. Следовательно, требовался поиск катализаторов, способных значительно снизить расход озона при улучшении всех показателей обрабатываемой воды. Наиболее близким по технической сущности является способ очистки сточных вод [6], содержащих вещества, обуславливающие их цветность, включающий фильтрацию вод с заданной скоростью через слой ионообменного сорбционного углеродно-волокнистого материала. Сорбент, выбранный в виде углеродно-волокнистого материала (далее УВМ), отличается высокой кинетикой извлечения органических веществ из водных растворов. Так, например, сорбционная динамическая емкость по йоду на два порядка выше активированного угля (далее АУ). Выяснено, что при взаимодействии УВМ с красителями снижается цветность последних, также происходит очистка сточных вод, содержащих ПАВ. Однако для достижения высокой степени очистки от содержащихся в сточных водах красителей и ПАВ для требуемого снижения цветности очищенных вод необходимо значительное увеличение молекулярной массы волокна, что приводит к значительному удорожанию процесса очистки. Технической задачей настоящего изобретения является повышение степени очистки сточных вод от примесей красильно-отделочных производств при исключении снижения скорости фильтрации (прохождение через фильтр с УВМ), повышения степени их осветления, обесцвечивания и обезвреживания, а также при повышении экономической эффективности процесса очистки. Предложено два варианта очистки сточных вод, в которых воду фильтруют через предварительно обработанную ткань, в одном варианте "Бусофит", а в другом - "Вискумак", после чего воду подвергают озонированию. Для повышения эффективности очистки сточных вод предложено следующее. Проводить дополнительную очистку сточных вод после озонирования через активированный уголь. Предварительную обработку ткани проводить - путем прокаливания ткани, осуществляемого при 110 - 120oC в течение 2 - 4 часов, либо - путем обработки ткани в кислой среде, замачивая в ней ткань в течение 115 - 125 минут непосредственно перед фильтрацией, либо - путем прокаливания и замачивания при режимах, указанных ранее. Выбор скорости vф, м/ч, фильтрации через углеродно-волокнистую ткань в диапазоне 1,0 ... 2,0 м/ч также повышает эффективность очистки. Для повышения эффективности очистки для всех случаев следует озонирование проводить при расходах озона dоз, мг/л, определяемых следующей зависимостью dоз= k







dz - изменение концентрации УВМ во время цикла очистки, мг/л. Существом настоящего изобретения является использование известных углеродных волокнистых сорбционных материалов: "Бусофит" и "Вискумак" [7] в качестве ионообменных фильтров для первичной очистки сточных вод, в зависимости от вида примесей - красящих веществ в очищаемых сточных водах, в сочетании с озонированием, что позволило снизить как расход тканей, так и доз озона в значительно большей степени, чем при использовании других углеродно-волокнистых материалов/тканей, причем выбор доз озона зависит от степени концентрации красителей в очищаемых сточных водах. "Бусофит" и "Вискумак" выпускаются в виде углеродно-волокнистых трикотажных тканей, обладают высокими сорбционными свойствами и предназначены для очистки отработанных промышленных растворов, а также для очищения ран вследствие известности их бактерицидных свойств. Сведения об использовании данных тканей для очистки окрашенных сточных вод, а именно их осветления и обесцвечивания, отсутствуют. Для очистки сточных вод красильно-отделочных производств эффект очистки может быть улучшен при проведении стартовой обработки фильтра из Бусофита, либо из Вискумака. Перед использованием углеродно-волокнистого тканного фильтра его следует прокалить при температуре 110...120oC в течение 2....4 часов и каждый раз непосредственно перед фильтрацией ткань можно дополнительно замочить в кислой среде. Для используемых средств очистки нами эмпирически установлено, что наилучшие результаты могут быть получены при скоростях vф, выбранных в диапазоне 1,0. . .2,0 м/ч. При больших скоростях vф наблюдали увеличение цветности в водах, прошедших очистку через УВМ с озонированием, при меньших скоростях vф улучшения качества очищенных вод не фиксировалось. Проведенные нами исследования показали, что при пропускании сточных вод красильно-отделочных производств через Бусофит либо Вискумак с последующим озонированием для достижения необходимого уровня цветности стало возможным снизить расход озона более чем на 40% по сравнению со способом, в котором сточные воды озонируют, пропускают через активированный уголь, а потом также озонируют [3] . При этом из теоретических расчетов, учитывающих как разницу пор УВМ и АУ и взаимодействие УВМ с молекулами красителей, нами получено уменьшение расхода озона всего на приблизительно 20-25%. Следовательно, использование новых волокнистых фильтрующих ионообменных сорбционных материалов в виде именно Бусофита или Вискумака приводит к неожиданно большому снижению расхода озона. В таблице 1 приведены структурные характеристики сорбентов, а именно удельное количество макропор P, см3/г, и процентное содержание мезопор B от общего объема сорбента, а также характеристики объема пор и пустот в см3/г: суммарный объем микропористых зон V, объем пустот микропор Vmu, объем мезопор Vm

dоз= k


где k - коэффициент массообмена, м/ч,

- при исходной концентрации красителя Cкр, равной 2...10 мг/л, т.е. интенсивности красителя ИК, равной 1:16 ... 1:100, коэффициент массообмена k, м/ч, можно принять равным единице;
- при исходной концентрации красителя Cкр более 10 мг/л, т.е. интенсивности красителя ИК более 1:100, коэффициент массообмена k, м/ч, определяют из зависимости
k = (VСТВ





где VСТВ - объем сточных вод во время цикла очистки сточных вод, м3,
VУВМ - объем УВМ, м3,
CУВМ - начальная удельная поверхность УВМ, мг/л,
dz - изменение концентрации УВМ во время цикла очистки, мг/л. Выяснено опытным путем, что при изменении концентрации Cкр красителя от 2. . .10 мг/л до более 10 мг/л требуется увеличить объем УВМ в 2....5 раз, а дозу озона - в 4....5 раз. Нами установлено, что только сочетание пропускания сточных вод красильно-отделочных производств вначале через Бусофит либо через Вискумак и использования озонирования позволило получить обесцвечивание более 98






- в первом случае толщина B УВМ была выбрана равной 3

- во втором случае толщина B УВМ была выбрана равной 1

при одной и той же площади фильтра. Пробы сточных вод, взятые после прохождения фильтра с загрузкой тканью Вискумак, в обоих случаях показали практически одинаковую выбираемость красителей в сточных водах (в пределах ошибки измерений, см. таблицу 2). После прохождения предложенного нами фильтра из угольно-волокнистого материала (далее УВМ) Вискумак сточные воды подвергали озонированию. Расход озона для обоих случаев составил 10




1. Ласков Ю. М. , Кузнецова Т.В., Пальгунов Н.Н., ВСТ (1997), N 3, сс. 11-13. 2. Кузнецова Т.В. и Пальгунов Н.Н. Гальванотехника и обработка поверхности (1997), т. V, N 1, сс. 54, 55. 3. Авторское свидетельство 1159894, 1983, C 02 F 1/28. 4. Аширов А.Ю. Ионообменная очистка сточных вод, растворов, газов. Л.: Химия, 1983, сс. 99-101. 5. Кузнецова Т.В. и Пальгунов Н.Н. Гальванотехника и обработка поверхности (1997), т. V, N 1, с. 60. 6. Ласков Ю.М., Кузнецова Т.В., Пальгунов Н.Н. ВСТ (1997), N 3, с. 15. 7. Углеродно-волокнистый материал "Бусофит", "Вискумак" ТУ 88 БССР 180-90.
Формула изобретения
dоз= k


где k - коэффициент массообмена, м/ч;

Cкр - исходная концентрация красителя, мг/л;
B - толщина слоя углеродно-волокнистого материала (УВМ), м. 8. Способ по п.7, отличающийся тем, что при исходной концентрации красителя Cкр, изменяющейся в диапазоне 2 - 10 мг/л, коэффициент массообмена k, м/ч, выбирают равным единице. 9. Способ по п.7, отличающийся тем, что при исходной концентрации красителя Cкр более 10 мг/л коэффициент массообмена k, м/ч, определяют следующей зависимостью:
k = (VСТВ





где VСТВ - объем сточных вод во время цикла очистки сточных вод, м3;
VУВМ - объем УВМ, м3;
CУВМ - начальная удельная поверхность УВМ, мг/л;
dz - изменение концентрации УВМ во время цикла очистки, мг/л.
РИСУНКИ
Рисунок 1, Рисунок 2