Бинокулярная зрительная труба ночного видения
Бинокулярная зрительная труба содержит фронтальный объектив, электронно-оптический преобразователь, корректор аберраций, коллимационный объектив и бинокулярную телескопическую систему. Бинокулярная телескопическая система состоит из дополнительного объектива, блока расщепления пучка, системы призм, содержащей две ромб-призмы, и двух окуляров. Система призм выполнена из стекла с коэффициентом преломления менее 1,6. Ромб-призмы выполнены с углами при вершине 30o. Обеспечиваются уменьшение себестоимости, массы и длины прибора. 1 ил.
Изобретение относится к технике ночного видения, а в частности к бинокулярным зрительным трубам ночного видения, таким как очки, бинокли.
Известна система ночного видения (CH-патент 439781, N.V.Oude Delft), состоящая из фронтального объектива для проецирования объекта на фотокатод электронно-оптического преобразователя (ЭОПа), самого ЭОПа, коллимационного объектива для отображения экрана ЭОПа в бесконечность и бинокулярной телескопической системы. Эта телескопическая система состоит из двух половин, каждая из которых принимает геометрически отделенную часть параллельных лучей, покидающих коллимационный объектив, и построена из призменной системы Porro первого рода, объектива, расположенного между призмами и окуляра, расположенного на выходной стороне второй призмы. Недостатками данной системы ночного видения являются сложность конструкции, высокая себестоимость, большая масса и длина. Известна также бинокулярная зрительная труба ночного видения (Европейское заявление патента N 0042812 от 09.06.81 г., прототип), содержащая фронтальный объектив, электронно-оптический преобразователь, коллимационный объектив и бинокулярную телескопическую систему, построенную из дополнительного объектива, блока расщепления пучка, двух преломляющих призм из стекла с показателем преломления больше 1,65 и двух окуляров. Недостатком данной бинокулярной зрительной трубы являются большая масса, длина и себестоимость из-за использования в призменной системе ромб-призм с углом при вершине 45o, выполненных из стекла с коэффициентом преломления, большим 1,65. Заявляемое техническое решение направлено на снижение себестоимости, массы и длины прибора. Предлагаемая бинокулярная зрительная труба ночного видения содержит фронтальный объектив, электронно-оптический преобразователь, коллимационный объектив и бинокулярную телескопическую систему, состоящую из дополнительного объектива, блока расщепления пучка, системы призм и двух окуляров. Предлагаемая бинокулярная зрительная труба ночного видения отличается от прототипа тем, что система призм выполнена из стекла с коэффициентом преломления менее 1,6, в качестве призм использованы ромб-призмы с углами при вершине 30o, а между электронно-оптическим преобразователем и коллимационным объективом введен корректор аберраций. На чертеже структурно изображены оптическая схема бинокулярной зрительной трубы ночного видения в продольном разрезе и ход лучей в соответствии с настоящим изобретением. Предлагаемая бинокулярная зрительная труба ночного видения содержит фронтальный объектив 1, электронно-оптический преобразователь 2, имеющий фотокатод 3 и экран 4, корректор аберраций 5, коллимационный объектив 6 и бинокулярную телескопическую систему 7, состоящую из дополнительного объектива 8, блока расщепления пучка 9, системы призм, состоящую из двух ромб-призм с углом при вершине 30o 10, 11, выполненных из стекла с коэффициентом преломления менее 1,6, и двух окуляров 12, 13. Предлагаемая зрительная труба ночного видения работает следующим образом. Фронтальный объектив 1 проецирует изображение объекта на фотокатод 3 электронно-оптического преобразователя 2. Изображение объекта, сформированное на экране 4 ЭОПа 2, попадает в корректор аберраций 5, который для уменьшения длины прибора расположен вблизи экрана 4 и находится практически внутри ЭОПа 2. Корректор аберраций 5 корректирует изображение объекта под параметры коллимационного объектива 6, который за счет использования корректора аберраций 5 имеет простую конструкцию и состоит из двух линз. Коллимационный объектив 6 проецирует изображение объекта в бесконечность, т.е. световой пучок входит в дополнительный объектив 8 параллельно оси прибора. Затем дополнительный объектив 8 вводит сходящийся световой пучок в призму 10 и далее на блок расщепления пучка 9, который представляет собой обычное светоделительное покрытие. Пятьдесят процентов светового потока отражается от светоделительного покрытия и за счет двух полных внутренних отражений и одного зеркального отражения выходит из призмы 10 параллельно оси прибора на расстоянии, равном 1/2 базе глаз. Вторая часть светового потока проходит сквозь светоделительное покрытие и попадает в призму 11 и далее за счет двух полных внутренних отражений и двух зеркальных отражений выходит из призмы 11 параллельно оси прибора также на расстоянии, равном 1/2 базе глаз. Световые пучки, выходя из призм 10, 11, попадают в окуляры 12, 13, через которые оператор рассматривает изображение объекта. В связи с тем, что в качестве призм 10, 11 использованы ромб-призмы с углами при вершине 30o, выполненные из стекла, имеющего коэффициент преломления меньше 1,6, снижены масса и длина прибора, кроме того, длина прибора также уменьшена за счет расположения корректора аберраций 5 вблизи экрана 4, т.е. практически внутри самого ЭОПа. За счет применения более дешевой марки стекла для изготовления призм и уменьшения его объема снижена себестоимость прибора. На первый взгляд кажется, что данные улучшения не значительны. Рассмотрим на практическом примере, какой получается выигрыш по массе и себестоимости. Для этого зададим величину базы глаз, равную 64 мм, т.е. расстояние между центрами граней призм будет равным 32 мм. Рассчитаем объем стекла в случае использования 45o призм. Для обеспечения диаметра выходного зрачка окуляра в пределах 13-15 мм ширина призмы должна быть не менее 17 мм. В этом случае объем призмы составит 32 мм









0,5



Объем выравнивающей пластины диаметром 18 мм составит
3,14


Суммарный объем стекла при использовании 30o призм составит
(5,025

Так как в прототипе показатель преломления стекла призм должен превышать 1,65, то целесообразно использовать стекло ТК21 с показателем преломления 1,66 и плотностью 3,98 г/см2. Для 30o призм подходит практически любое стекло, поэтому целесообразно использовать наиболее распространенное и дешевое стекло К8 с показателем преломления 1,5183 и плотностью 2,52 г/см2. При выбранных марках стекла масса стеклодеталей призменной системы составит
для 45o призм 25,276 см3

для 30o призм 13,655 см3

Формула изобретения
РИСУНКИ
Рисунок 1
Похожие патенты:
Изобретение относится к технике оптико-электронных приборов визуализации изображения и предназначено для наблюдения при пониженном уровне естественной освещенности
Прибор ночного видения // 2130196
Прибор инфракрасного наблюдения // 2129293
Изобретение относится к светотехническому приборостроению, фототехнике, криминалистике
Оптико-электронный аппарат // 2122745
Изобретение относится к оптико-электронным аппаратам наблюдения с высоким пространственным разрешением и может быть использовано для повышения качества изображения в увеличенном поле
Прибор ночного видения // 2121158
Космический зеркально-линзовый телескоп // 2115942
Изобретение относится к области оптического приборостроения, в частности к области космических зеркально-линзовых телескопов, и может быть использовано для улучшения их технических характеристик, а именно для получения большого углового поля и одновременно высокого линейного разрешения на местности, что особенно актуально при разработке малых космических аппаратов
Изобретение относится к оптико-электронной технике и может быть использовано при изготовлении приборов ночного видения с электронно-оптическими преобразователями (ЭОП) в самых разнообразных условиях эксплуатации
Многоканальное устройство наблюдения // 2145433
Изобретение относится к оптическому приборостроению, в частности к устройствам оптического наблюдения, наведения и прицеливания, а именно к перископам
Бинокулярный прибор ночного видения // 2147761
Изобретение относится к области оптико-электронной техники и может быть использовано при изготовлении приборов ночного видения
Оптический прицел // 2148775
Изобретение относится к области оптического приборостроения, в частности к прицелам переменного увеличения с автоматической установкой угла прицеливания для стрелкового и охотничьего оружия
Изобретение относится к оптическому приборостроению и может быть использовано в наблюдательных и прицельных приборах
Космический зеркально-линзовый телескоп // 2154293
Изобретение относится к оптическому приборостроению, в частности к космическим зеркально-линзовым телескопам, и может быть использовано для улучшения их технических характеристик: для получения малых габаритов, большого углового поля и одновременно высокого линейного разрешения на местности
Изобретение относится к оптическому и оптико-электронному приборостроению и, конкретно, к бинокулярным системам, используемым для визуального стереоскопического наблюдения удаленных объектов в дневных и ночных условиях
Изобретение относится к оптическому и оптико-электронному приборостроению и, конкретно, к системам, используемым для визуального наблюдения удаленных предметов в дневных и ночных условиях
Прибор ночного видения (варианты) // 2165634
Изобретение относится к оптико-электронной технике и может быть использовано в приборах ночного видения с электронно-оптическими преобразователями (ЭОП) и пьезоэлементами
Изобретение относится к области оптико-электронного приборостроения, в частности, к области космических зеркально- линзовых телескопов и электронно-оптических камер и может быть использовано для улучшения их технических характеристик и расширения функциональных возможностей, а именно для уменьшения их габаритных размеров и массы при одновременном высоком линейном разрешении в панхроматическом канале и высоком отношении сигнал/шум в мультиспектральных каналах
Изобретение относится к области оптико-электронной техники и может быть использовано при изготовлении приборов ночного видения с электронно-оптическими преобразователями