Способ выщелачивания никелево-медного штейна
Изобретение может быть использовано для выщелачивания никеля и меди из никелево-медного штейна, образующегося при пирометаллургическом получении никеля, с помощью многостадийного процесса. Сущность изобретения состоит в том, что выщелачивание никеля происходит по крайней мере на двух стадиях в условиях, когда практически отсутствует свободная серная кислота, на этих стадиях выщелачивание никеля, содержащегося в штейне, в основном проводят при помощи меди, которая является окислителем. Повышается степень извлечения ценных металлов. 8 з.п. ф-лы, 2 табл.
Настоящее изобретение касается способа выщелачивания никеля и меди из полученного методом пирометаллургии никелево- медного штейна, образующегося при пирометаллургическом получении никеля с применением многостадийного процесса. Основной особенностью изобретения является то, что выщелачивание никеля происходит по крайней мере в две стадии, практически без применения свободной серной кислоты, и что окислителем при выщелачивании никеля, содержащегося в штейне, в основном является медь.
Среди известных способов имеется способ, описанный в патенте США 3741752, согласно которому выщелачивание никелево-медного штейна проводили посредством трехстадийного процесса под давлением. Измельченный штейн выщелачивали на первой стадии путем окислительного выщелачивания под давлением при помощи анолита, рециркулирующего с электролитического выделения меди. Цель состояла в том, чтобы растворить основную часть никеля, но чтобы медь при этом осталась нерастворенной. При необходимости, заключительную часть этой первой стадии выщелачивания можно проводить без окисления. После разделения раствора и осадка, раствор передавался на стадии очистки, после которых проводилось электролитическое выделение никеля. Выщелачивание осадка продолжали на второй стадии окислительного выщелачивания под давлением, вновь применяя анолит после электролитического выделения меди, теперь уже с целью извлечь всю медь и никель, содержащиеся в осадке. Раствор, полученный после этого выщелачивания, передавался после очистки на электролитическое выделение меди. Если в исходном материале содержание драгоценных металлов было высоким, можно было при необходимости, осадок, поступающий со второй стадии, подвергнуть третьей стадии выщелачивания, проводимого в условиях усиленного окисления, так чтобы в остатке, содержащем драгоценные металлы, оставалось минимальное количество меди и никеля. Среди известных способов также имеется способ выделения ценных материалов из никелево-медного штейна, описанный в патенте США 4093526. В этом способе первая стадия выщелачивания проводится при атмосферном давлении раствором, рециркулирующим со второй стадии выщелачивания; если необходимо, на этой стадии добавляется серная кислота. Цель первой стадии выщелачивания состоит в том, чтобы выделить никель из штейна в виде сульфата никеля, и в том, чтобы получить в осадке либо металлическую медь, либо гидроксид меди, которые растворятся а второй стадии выщелачивания. Раствор, полученный на первой стадии, передается на очистку и после этого на электролитическое выделение никеля. Осадок после выщелачивания при атмосферном давлении ("атмосферного выщелачивания") подвергают дальнейшему выщелачиванию, и вторая стадия выщелачивания проводится под давлением в условиях окисления, и на этой стадии в процесс вводят анолит, рециркулирующий после электролитического выделения меди, и серную кислоту. Медь, которая сцементировалась на первой стадии, в этих условиях растворяется и выщелачивается, а никель остается в осадке, и когда раствор со второй стадии возвращают на первую стадию, он реагирует с сульфидом никеля NiS2 и с элементарным никелем, содержащимся в штейне, выщелачивая оба эти вещества. В результате этих реакций медь осаждается в кислоторастворимой форме, как было указано выше. Осадок после второй стадии выщелачивается анолитом, поступающим с электролитического выделения меди, в окислительных условиях в автоклаве, т.е. в условиях так называемого полного выщелачивания, цель которого состоит в выщелачивании всего никеля, кобальта и меди, оставшихся в осадке. Раствор, образующийся на третьей стадии, подают после очистки на электролитическое выделение меди, а образовавшийся осадок представляет собой в основном осадок железа, который можно удалить как отходы. В патенте США 4323541 предложен способ выщелачивания никелево-медного штейна, который включает в себя сначала двухстадийное окислительное выщелачивание при атмосферном давлении и затем стадию выщелачивания под давлением, цель которого состоит в том, чтобы извлечь никель, содержащийся в штейне, но оставить неизвлеченной основную часть меди. Таким образом, осадок, образующийся на третьей стадии выщелачивания, содержит большую часть меди и драгоценные металлы, и его можно подвергнуть дальнейшей переработке, например при рафинировании меди. Другой способ выщелачивания никелево-медного штейна описан в патенте Великобритании 2108480. На первой стадии штейн подвергают выщелачиванию под давлением в условиях окисления анолитом, рециркулирующим с электролитического выделения меди. После того, как выщелачивается по крайней мере 70% никеля, содержащегося в штейне, выщелачивание продолжается в условиях отсутствия окисления. Раствор, полученный на первой стадии, далее обрабатывают, подвергая его окислительному очистительному выщелачиванию при атмосферном давлении, добавляя в него также тонкоизмельченный штейн. Цель очистительного выщелачивания состоит в удалении растворенной меди и железа из раствора. Раствор, полученный в результате очистительного выщелачивания, подается после очистки на электролитическое выделение никеля и затем обратно на первую стадию выщелачивания. Осадок после выщелачивания с первой стадии подается на вторую стадию выщелачивания под давлением, которая также проводится в условиях окисления анолитом, рециркулирующим с электролитического выделения меди. Цель второй стадии - провести полное выщелачивание меди, и раствор, полученный после этого выщелачивания, подается на электролитическое выделение меди, возможно, после удаления селена. Образовавшийся осадок содержит основную часть железа, которое содержалось в штейне. Еще один способ выделения никеля на никелево-медного штейна описан в патенте Канады 2063031. В этом способе первая стадия представляет собой окислительное кислотное выщелачивание штейна при атмосферном давлении в анолите, рециркулирующем с электролитического выделения никеля, причем указанный анолит содержит примерно 50 г/л Ni и 50 г/л H2SO4. В результате выщелачивания получается раствор сульфата никеля, который после очистки передается на электролитическое выделение никеля. Образовавшийся осадок содержит сцементированные металлическую медь, сульфид меди, оксид меди в непрореагировавшие сульфид никеля и оксид никеля. Во время выщелачивания pH поддерживают в пределах 4.0 - 6.5. Выщелачивание на второй стадии проводят в условиях, аналогичных первой стадии, т.е. для выщелачивания используют никелевый анолит, и целью является выщелачивание основной массы оставшегося никеля и образование осадка, в котором содержится примерно 60% растворимых в кислоте соединений, например, основных сульфатов меди и никеля и арсената железа. Раствор со второй стадии выщелачивания подается на первую стадию, и в результате получают осадок с высоким содержанием меди, который передается на неокислительное выщелачивание под давлением, которое идет в кислой среде. Даже на этой стадии подается анолит, образующийся при электролитическом выделении никеля. Цель выщелачивания под давлением состоит в том, чтобы провести селективное выщелачивание никеля и арсената железа из осадка так, чтобы медь осталась в осадке. Образующийся раствор частично поступает на вторую стадию выщелачивания, а остаток обрабатывают с целью осаждения железа и мышьяка. Полученный осадок содержит медь и драгоценные металлы и его выгодно передать на рафинирование меди. Этот процесс аналогичен процессу, описанному в упомянутом выше патенте США 4323541, за исключением того, что последнее выщелачивание, осуществляемое в автоклаве, проводится не в "окислительных", а в "неокислительных" условиях, т.е. в отсутствие газообразного кислорода. В способе, предлагаемом в настоящем изобретении, выщелачивание никелево-медного штейна также осуществляется в несколько стадий, первые из которых проводятся при атмосферном давлении, а последующие - под повышенным давлением. Характерной чертой способа, предложенного в настоящем изобретении, является то, что выщелачивание никеля, содержащегося в никелево-медном штейне, осуществляется в основном путем использования окислительного действия иона меди. Поэтому на первой стадии выщелачивания в процессе, описанном в настоящем изобретении, вместо кислой среды создаются условия, когда штейн выщелачивается в нейтральном растворе сульфата никеля, содержащем сульфат меди, так что сульфат меди, содержащийся в растворе, выщелачивает никель, содержащийся в штейне. В ходе выщелачивания здесь образуются несколько растворимых в кислоте соединений меди, таких как основные сульфаты меди и гидроксид меди, которые однако осаждаются на этой стадии выщелачивания в нейтральной среде. Вторая стадия выщелачивания проводится в кислой среде, и образовавшиеся соединения меди реагируют с серной кислотой, превращаясь в сульфат меди, который далее опять выщелачивает никель, содержащийся в штейне. Третья стадия - это выщелачивание под давлением, где осадок со второй стадии выщелачивается в нейтральном растворе сульфата меди в слабоокислительных или неокислительных условиях, и результатом этой стадии является полное выщелачивание никеля, в то время как основная часть меди осаждается. Для того чтобы провести выщелачивание меди, которая содержится в осадке, полученном после полного выщелачивания никеля, проводится окислительное выщелачивание в кислой среде, в результате которого медь, содержащаяся в штейне, выщелачивается и передается на электролитическое выделение меди. Остающийся осадок содержит драгоценные металлы и может быть обработан известными способами. При необходимости, перед электролитическим выделением меди из раствора сульфата меди удаляют селен и родий известными способами. Способом, предложенный в настоящем изобретении, можно достичь хорошей степени извлечения ценных металлов. Под ценными металлами мы подразумеваем по крайней мере никель, кобальт, свинец и драгоценные металлы, к которым мы относим серебро, золото, платину, палладий, селен и родий. Другой отличительной особенностью способа, предложенного в настоящем изобретении, является то, что по крайней мере одна стадия выщелачивания при атмосферном давлении и одна стадия выщелачивания под давлением (при повышенном давлении) проводятся в нейтральной среде, и что даже на других стадиях есть тенденция использовать, насколько возможно, нейтральные растворы. Здесь нейтральная среда означает такую среду, где практически отсутствуют свободные кислоты. Преимущество нейтральных стадий состоит в том, что в таких условиях коррозия происходит в меньшей степени, чем в тех способах, где все стадии выщелачивания проводятся в кислой среде, например, с добавлением возвратной кислоты (анолита) после электролитического выделения никеля или меди. Еще одно преимущество, которое стоит отметить, заключается в том, что, как мы обнаружили, более нейтральная среда увеличивает тенденцию к образованию таких промежуточных продуктов, которые на следующей стадии процесса быстро растворяются. Основные новые отличительные черты изобретения станут очевидными из приведенной здесь формулы изобретения. Далее изобретение описывается со ссылкой на технологическую схему процесса, показанную на фиг.1. Никель, содержащийся в никелево-медном штейне, присутствует в нескольких различных формах, таких как элементарный никель Ni или сульфид никеля Ni3S2, который можно назвать первичным сульфидом, потому что он является продуктом пирометаллургического процесса. Избыточный сульфат удаляется из анолита, полученного при электролитическом выделении никеля 5, при помощи карбоната натрия, и образовавшийся карбонат никеля используется для нейтрализации свободной серной кислоты на стадии 6. Карбонат никеля может также использоваться позже, для нейтрализации осадков, содержащих железо и мышьяк. Сульфат натрия, образовавшийся при удалении сульфата, выводится из процесса. Практически нейтральный раствор NiSO4 подается на первую стадию выщелачивания при атмосферном давлении (стадия 1). Кроме этого, на первую стадию выщелачивания подают раствор сульфата меди, содержащий сульфат никеля, рециркулирующий со следующей стадии атмосферного выщелачивания 2, а также кислород или воздух. Благодаря действию сульфата меди и кислорода элементарный никель и сульфид никеля окисляются в сульфат никеля. В ходе процесса также получается основной сульфат меди CuSO4

Стадии 1 и 2 проводили так же, как в примере 1, и в табл. 2 приведены данные, иллюстрирующие только стадии 3 и 4. Из приведенных результатов видно, что высокая начальная концентрация кислоты не является предпочтительной на стадии 3, поскольку содержание остаточного никеля в осадке выше, чем в примере 1. Высокое содержание кислоты оказывает отрицательное влияние также на стадии 4. При выщелачивании здесь образуется элементарная сера, которая также частично препятствует полному выщелачиванию сульфида меди.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2