Способ снижения содержания органического и неорганического галогена в водном растворе азотсодержащей смолы
Способ применим при обработке водного раствора азотсодержащей смолы на основе эпигалоидогидрина с получением пониженного содержания в нем органического и неорганического галогена. Обработку указанного раствора осуществляют посредством электродиализа. Достигается повышение эффективности удаления галогена и улучшение качества целевого продукта. 14 з.п ф-лы, 5 ил.
Настоящее изобретение относится к способу снижения содержания органического и неорганического галогена в водном растворе азотсодержащей смолы на основе эпигалоидогидрина и к использованию продукта, полученного данным способом. Более конкретно, настоящее изобретение относится к обработке водного раствора азотсодержащей смолы на основе эпигалоидогидрина электродиализной очисткой с получением водного раствора азотсодержащей смолы на основе эпихлоргидрина, имеющего сниженное содержание органического и неорганического галогена. Полученные данным способом водные растворы используются как добавки в производстве бумаги.
Попытки последних лет снизить использование галогенсодержащих соединений имеют особенный интерес, в частности, в области изготовления целлюлозы и бумаги. Органический галоген в органических соединениях является ответственным за повышенное содержание галогена в сточных водах, а также в бумаге и картоне. Смолы на основе эпигалоидогидрина являются галогенсодержащими органическими соединениями, широко используемыми в качестве добавок в производстве бумаги, например в качестве влагоупрочняющих (упрочняющих в мокром состоянии) агентов. Для снижения содержания органического галогена смол на основе эпигалоидогидрина разработано много способов. Заявка на Европейский патент 0512423 и Патенты США 4857586 и 4975499 относятся к разработке водных растворов смол на основе эпигалоидогидрина сильными основаниями. Заявка на Европейский патент 0510987 описывает ферментативное дегалогенирование галогенсодержащих соединений, присутствующих в водных растворах смол на основе эпигалоидогидрина. Однако основной недостаток этих способов состоит в том, что они снижают только содержание органического галогена, но увеличивают содержание неорганического галогена в виде ионов галогена, поэтому общее содержание галогена в водном растворе остается постоянным. Это является серьезным ограничением, так как органический галоген образуется реакциями ионов галогена с органическими соединениями, присутствующими в водном растворе, в частности, если pH продукта снижается ниже 7, особенно 3-5, для улучшения стабильности при хранении. WO 92/22601 рассматривает возможность удаления как органического, так и неорганического галогена из смол на основе эпигалоидогидрина в результате пропускания их водного раствора через сильноосновную ионообменную смолу (ионообменную смолу, имеющую свойства сильного основания). Недостатком этого способа является периодический характер, обусловленный необходимостью время от времени регенерировать ионообменную смолу. Промывки и регенерирование или смывка смолы также дают сточные воды, которые все еще содержат органические соединения, вызывающие проблемы в сточных водах благодаря их химическому потреблению кислорода, и довольно высокий процент солей, т.к. для регенерирования в избытке используются химические реактивы. Применение электродиализа описывается в литературе во многих случаях, смотри, например, Р.У.Бейкер и др. Membrane Separation Systems, Noyes Data Corp, 1991. Электродиализ является также хорошо отработанной технологией для обессоливания жесткой воды для производства питьевой воды и пищевой соли и наиболее часто используется в процессах, включающих неорганический материал. Однако согласно Патентам США 4802965 и 5145569 электродиализ может также быть использован для удаления солей из водных растворов органических соединений. Соответственно объектом настоящего изобретения является способ обработки (очистки) водного раствора азотсодержащей смолы на основе эпигалоидогидрина для того, чтобы получить водный раствор азотсодержащей смолы на основе эпигалоидогидрина, имеющий сниженное содержание органического и неорганического галогена. Далее объектом изобретения является способ, как описано выше, который может быть осуществлен непрерывно. Другим объектом настоящего изобретения является способ, как описано выше, который дает водный раствор, имеющий сниженное содержание галогенированных продуктов и галогенированных побочных продуктов. Еще одним объектом изобретения является способ, как описано выше, который снижает содержание органического и неорганического галогена в водном растворе галогенсодержащего органического соединения до уровней, более низких, чем получаемые при использовании известных способов. Цели изобретения достигаются способом, как определено далее в формуле изобретения. Точнее, изобретение относится к способу снижения содержания органического и неорганического галогена в водном растворе азотсодержащей смолы на основе эпигалоидогидрина в результате обработки водного раствора электродиализной очисткой. В соответствии с настоящим изобретением установлено, что водные растворы азотсодержащих смол на основе эпигалоидогидрина можно подвергнуть электродиализу без закупорки мембран. Кроме того, неожиданно было найдено, что электродиализная обработка (очистка) водных растворов, содержащих азотсодержащие смолы на основе эпигалоидогидрина, не только удаляет ионносвязанные ионы галоида, но также значительно снижает содержание органического галогена, ковалентно связанного с органическими соединениями, присутствующими в растворе. Предполагается, что в смолах на основе эпигалоидогидрина образуются эпоксидные группы, когда удаляется органический связанный галоген, и что органический связанный галоген превращается в неорганический галоген. Под электродиализом понимается любой электрохимический процесс, включающий использование по крайней мере одной ионоселективной мембраны. Под органическим галогеном понимается весь галоген, связанный с органическими молекулами. Эти галогены предпочтительно соединены ковалентными связями с органическим соединением. Под неорганическим галогеном понимается галоген в виде ионов галоида, таких как Cl- и Br-. Общее содержание галогена является суммой органического галогена и неорганического галогена. В соответствии со способом настоящего изобретения может использоваться любой тип азотсодержащих смол на основе эпигалоидогидрина. Соответственно смолы образуются реакциями азотсодержащих предшественников (исходных веществ), выбираемых из аминов, полиаминов, полиаминоамидов и их смесей, с эпигалоидогидринами, как смолы, описанные Деном Эклундом и Томом Линдстремом в "Paper Chemistry, An Itroduction" стр. 97, ДТ Paper Science Publications, 1991. Предпочтительно смолы являются смолами на основе полиаминоамид-эпигалоидогидрина, которые также называются смолами на основе полиамидоамин-эпигалоидогидрина. Эпигалоидогидрины, которые могут быть использованы, включают в себя эпибромгидрин и эпихлоргидрин, предпочтительно эпихлоргидрин. Соответственно смолы получаются использованием 0,5-2,0 молей эпигалоидогидрина на моль основного азота в азотсодержащем предшественнике. Азотсодержащим предшественником является предпочтительно полиаминоамидный продукт реакции поликарбоновой кислоты, соответственно дикарбоновой кислоты, и полиамина. Термин "карбоновая кислота" включает в себя производные карбоновой кислоты, такие как ангидриды (сложные) эфиры и полуэфиры. Соответствующие поликарбоновые кислоты включают в себя насыщенные или ненасыщенные алифатические или ароматические дикарбоновые кислоты. Предпочтительно поликарбоновые кислоты содержат менее 10 углеродных атомов. Соответствующие поликарбоновые кислоты включают в себя щавелевую кислоту, малоновую кислоту, янтарную кислоту, глутаровую кислоту, адипиновую кислоту, азелаиновую кислоту, себациновую кислоту и их производные. Может также применяться смесь этих соединений. Адипиновая кислота является предпочтительной. Соответствующие полиамиды включают в себя полиалкиленполиамины или их смеси, имеющие следующую общую формулу: H2-N-(CR1H)a-(CR2H)b-N-(R3) -(CR4H)c-(CR5H)d-NH2 (I), в которой R1-R5 представляют водород или низший алкил, предпочтительно до C3, a - d - целые числа от 0 до 4. Предпочтительные полиалкиленполиамиды включают в себя диэтилентриамин, триэтилентетрамин, тетраэтиленпентамин, дипропилентриамин и их смеси. Полиамины общей формулы (I) могут комбинироваться с другими полиаминами или смесями других аминов. Предпочтительно эти амины имеют следующие общие формулы II - VII:

2Cl- ---> Cl2 + 2e-
Анод может быть также водородным деполяризованным анодом, где газообразный водород окисляется в газодиффузионный электрод согласно следующей реакции:
H2 --->2H+ + 2e-
Катод соответственно выполняется из электропроводящего материала, устойчивого к катодной поляризации в католите. В качестве примеров катодных материалов могут быть указаны сталь, нержавеющая сталь, никель и графит. Катод может быть также покрыт различными катализаторами, например окислами рутения. Обычно катодная реакция является выделением водорода согласно следующей реакции:
2e- + 2H2O ---> H2 + 2OH-
Катод может быть также кислородным деполяризованным катодом, где кислород восстанавливается в газодиффузионный электрод согласно следующей реакции
1/2 O2 + H2O + 2e- ---> 2OH-
Электродиализная обработка (очистка) изобретения может осуществляться периодическим, полунепрерывным или непрерывным способом. Предпочтительно используется полунепрерывный или непрерывный способ, наиболее предпочтительно непрерывный способ. Непрерывный способ содержит непрерывную подачу водного раствора смолы на основе эпигалоидогидрина в ячеечный отсек, непрерывную электродиализную обработку (очистку) раствора смолы с последующим выведением раствора из отсека. Раствор смолы может рециклироваться и он соответственно рециркулируется до получения требуемого содержания органического и неорганического галогена. Скорости потока, которые осуществимы согласно изобретению, зависят от условий процесса и легко определяются специалистами с учетом таких основных факторов, как используемый электродиализатор, размер отсеков, производительность и плотности тока. Настоящее изобретение относится также к применению водного раствора азотсодержащей смолы на основе эпигалоидогидрина, имеющего сниженное содержание органического и неорганического галогена, полученного данным способом, в качестве добавки в производстве бумаги, картона и толстой бумаги (тонкого картона). Водный раствор смолы предпочтительно используется в качестве влагоупрочняющего агента, но может быть использован также в качестве удерживающего средства, улавливателя анионных примесей и промотора проклеивания. Изобретение будет теперь описано более подробно со ссылкой на прилагаемые фиг. 1 - 5. Однако изобретение не ограничивается иллюстрируемыми вариантами, и многие другие варианты охватываются объемом формулы изобретения. Указанные ниже растворы являются водными растворами. На фиг. 1 представлена схема электродиализного устройства, содержащего одну электродиализную ячейку, содержащую две анионоселективные мембраны. На фиг. 2 показано электродиализное устройство фиг. 1, содержащее дополнительно одну катионоселективную мембрану. На фиг. 3 представлена схема электродиализного устройства, содержащего две электродиализные ячейки фиг. 2. На фиг. 4 представлена схема электродиализного устройства, содержащего одну анионоселективную мембрану, одну катионоселективную мембрану и одну биполярную мембрану. На фиг. 5 представлена схема электродиализного устройства, содержащего две различные электродиализные ячейки, соответственно используемого, когда водный раствор смолы предварительно обрабатывается ионами гидроокиси. Фиг. 1 схематически представляет электродиализное устройство, содержащее одну электродиализную ячейку (2), размещенную между анодом (А) и катодом (C). Ячейка содержит первый и второй отсеки (3,4) и первую и вторую анионоселективные мембраны (5,6). Смежно к ячейке размещен дополнительный отсек, обращенный к аноду и называемый далее анодным отсеком (7). Водный раствор, содержащий азотсодержащую смолу на основе эпигалоидогидрина, пропускается через второй отсек (4), раствор гидроокиси натрия пропускается через первый отсек (3), а раствор хлорида или сульфата натрия пропускается через анодный отсек (7). При создании разности электрических потенциалов между электродами ионы гидроокиси, находящиеся в первом отсеке (3), начинают мигрировать через первую анионоселективную мембрану (5) во второй отсек (4), а органический и неорганический галоген, присутствующий в смоле, начинает мигрировать в виде ионов галогена через вторую анионоселективную мембрану (6) в анодный отсек (7). В результате электродиализной обработки (очистки) водный раствор, содержащий азотсодержащую смолу на основе эпигалоидогидрина, имеющую сниженное содержание органического и неорганического галогена, выводится из второго отсека. Питанием анодных отсеков в способе изобретения может являться водный раствор соли, галоида металла, кислоты или гидроокиси металла, как описано ранее. Ионы должны иметь хорошую проводимость в растворе и они должны быть соответственно электрохимически инертными. Фиг. 2 представляет электродиализное устройство (8), подобное устройству, представленному на фиг.1, в котором ячейка (9) дополнительно содержит третий отсек (10) и катионоселективную мембрану (11), обращенную к аноду. Дополнительный отсек, смежный с электродиализной ячейкой, обращен к аноду и называется далее анодным отсеком (12). Растворы пропускаются через первый и второй отсеки (3,4), как описано выше. Кроме того, раствор хлористого натрия пропускается через третий отсек (10), а раствор гидроокиси натрия пропускается через анодный отсек (12). При создании разности электрических потенциалов между электродами ионы гидроокиси, находящиеся в первом отсеке (3), начинают мигрировать через первую анионоселективную мембрану (5), ионы галогена, находящиеся во втором отсеке (4), начинают мигрировать через вторую аминоселективную мембрану (6), а ионы натрия, находящиеся в анодном отсеке (12), начинают мигрировать через катионоселективную мембрану (11) в третий отсек (10), в результате соединяются вместе с ионами галогена, входящими из второго отсека (4), образуя обогащенный раствор галоида натрия в третьем отсеке (10). В результате электродиализной обработки (очистки) содержание органического и неорганического галогена в водном растворе смолы снижается. Поток поступающей гидроокиси может быть разделен на растворы, поступающие в первый отсек и в анодный отсек соответственно, а растворы, выходящие из указанных отсеков, могут быть объединены в один поток, который может рециркулировать. Электродиализное устройство может содержать две или более ячеек. Фиг. 3 показывает устройство (13), содержащее две ячейки типа, представленного на фиг. 2, между анодом (А) и катодом (C). Анодный отсек (14) размещается между анодом и ячейкой, обращенной к аноду. Растворы предпочтительно рециркулируют либо снова в отсеки, где они находились первоначально, либо в соответствующий отсек другой ячейки. Если в способе настоящего изобретения используется биполярная мембрана, электродиализное устройство может быть представлено, как показано на фиг.4. В устройстве (15) ячейка (16) содержит первый, второй, и третий отсеки (17,18,19), биполярную мембрану (20), анионоселективную мембрану (21) и катионоселективную мембрану (22). Дополнительный отсек, смежный с этой электродиализной ячейкой, обращен к аноду и называется далее анодным отсеком (23). Водный раствор, содержащий азотсодержащую смолу на основе эпигалоидогидрина, подается во второй отсек (18), водный раствор серной кислоты пропускается через первый отсек (17) и в анодный отсек (23) соответственно, а вода или раствор хлористоводородной кислоты пропускается через третий отсек (19). При создании разности электрических потенциалов между электродами электрически форсированная диссоциация воды на биполярной мембране (20) приводит к переносу ионов гидроокиси во второй отсек (18). Кроме того, ионы галогена, находящиеся во втором отсеке, начинают мигрировать через анионоселективную мембрану (21) в третий отсек (19), а протоны, поступающие в анодный отсек (23), начинают мигрировать через катионоселективную мембрану (22) в третий отсек (19), в котором образуется обогащенный раствор галоидоводородной кислоты. Многоячеечное устройство с биполярной мембраной содержит соответственно по крайней мере одну, предпочтительно более одной ячейки типа, содержащего анионоселективную мембрану и биполярную мембрану. Предпочтительно, чтобы ряд таких ячеек образовывал блок (группу) между электродами и был обращен к катоду. Предпочтительно это устройство дополнительно содержит ячейку типа, представленного на фиг.4, обращенную к аноду. На фиг.5 схематически представлено электродиализное устройство, которое может быть использовано для снижения содержания органического и неорганического галогена в водных растворах смолы, предварительно обработанных ионами гидроокиси Устройство (24) содержит две различные электродиализные ячейки, из которых первая ячейка (25) обращена к катоду и содержит первый и второй отсеки (26,27), первую катионоселективную мембрану (28) и анионоселективную мембрану (29), а вторая ячейка (30) содержит первый, второй и третий отсеки (31,32,33), первую катионоселективную мембрану (34), анионоселективную мембрану (35) и вторую катионоселективную мембрану. Дополнительный отсек, смежный со второй электродиализной ячейкой, обращен к аноду и далее называется анодным отсеком (37). Водные растворы, содержащие азотсодержащую смолу на основе эпигалоидогидрина и гидроокись натрия, пропускаются через вторые отсеки (27,32) обеих ячеек, водный раствор гидроокиси натрия пропускается через первый отсек (26) первой ячейки, водный раствор хлористого натрия пропускается через первый отсек (31) второй ячейки, водный раствор хлористоводородной кислоты пропускается через третий отсек (33), а водный раствор серной кислоты пропускается через анодный отсек (37)
В результате приложения разницы электрических потенциалов между электродами, ионы галогена, присутствующие в растворах смолы, начинают мигрировать через анионоселективные мембраны (29,35) обеих ячеек в первый и третий отсеки (31,33), второй ячейки, соответственно, а ионы натрия, присутствующие в растворах смолы, начинают мигрировать через первые катионоселективные мембраны (28, 34) обеих ячеек в первые отсеки (26,31) обеих ячеек соответственно. Растворы смолы могут рециркулировать, а дополнительная гидроокись натрия может добавляться в растворы смолы в ходе процесса. Многоячеечное устройство для обработки (очистки) водных растворов смолы, предварительно обработанных ионами гидроокиси, как показано на фиг.5, соответственно содержит по крайней мере одну, предпочтительно более одной ячейки типа, содержащего катионоселективную мембрану и анионоселективную мембрану. Предпочтительно, чтобы ряд таких ячеек группировался между электродами и был обращен к катоду. Предпочтительно это устройство дополнительно содержит ячейку, обращенную к аноду, которая является такого типа, который содержит первую катиноселективную мембрану, анионоселективную мембрану и вторую катионоселективную мембрану. Изобретение дополнительно иллюстрируется нижеследующими примерами, которые, однако, не предназначены для ограничения объема изобретения. Части и проценты относятся к массовым частям и процентам по массе соответственно, если не указано особо. Растворы, используемые в примерах, являются водными растворами. Пример 1
Электродиализное устройство типа, как, в основном отмечено на фиг. 2, используется для электродиализной обработки (очистки) смолы на основе полиаминоамид-эпихлоргидрина, изготовленной, как описано в примере 3 WO 92/22601. Раствор смолы имеет содержание сухого вещества 20% по массе, вязкость 12 мПз и обработка начинается при 20oC. Приблизительно 2 л первоначально 1М раствора гидроокиси натрия и 2 л первоначально 0,1 М раствора хлористого натрия пропускаются через отсеки, как показано на фиг.2. Процесс осуществляется при непрерывном прокачивании растворов через отсеки со скоростью 140 мл/ч и пропускании электрического тока 10 А через отсеки. Начальное напряжение равняется 6,9 В. Электродиализное устройство имеет площадь электродов 250 см2 и отсюда плотность тока до 40 мА/см2. Через 100 минут обработка приостанавливается и собранный раствор смолы нагревается до 35oC и выдерживается при этой температуре до достижения вязкости 20 мПз (25oC). Значение pH раствора смолы доводится до 3,5 добавлением серной кислоты
Данные анализа раствора смолы представлены в табл. 1
Содержание общего хлора определяется с использованием стандартного метода сжигания абсорбируемого органического галоида, Содержание неорганического хлора определяется с использованием аргентометрического титрования. Содержание органического хлора рассчитывается как разность между содержанием общего хлора и неорганического хлора. Содержание ДХП и ХПД, определяется газохроматографическим методом с пределом измерения 8 частей на млн. АОГ определяется в соответствии с DIN 38049, часть 14. Как видно, достигается значительное снижение содержание органического и неорганического хлора, а также побочных продуктов. Пример 2. В этом примере используется электродиализное устройство из примера 1 с той разницей, что пространство между двумя анионоселективными мембранами, через которое прокачивается раствор смолы, заполняется сильноосновной смолой Levatit М206, изготовитель - Bayer). Растворы смолы на основе эпигалоидогидрина, NaOH, NaCl, используемые в качестве исходных в способе примера 1, используются аналогично в этом примере. Растворы прокачиваются насосом через отсеки со скоростью 190 мл/ч при пропускании электрического тока 10 А между электродами. Напряжение равняется примерно 7-8 В. Через 3 часа обработка прерывается и собранный раствор смолы нагревается до 30oC для дополнительной полимеризации до достижения вязкости примерно 20 мПз. Затем pH доводится до 3,6 серной кислотой. Данные анализа раствора смолы представлены в табл. 2. Аналитические данные определяются, как описано в примере 1. Пример 3
В этом примере используется электродиализное устройство из примера 1 с той разницей, что первая анионоселективная мембрана, обращенная к катоду, заменяется катионоселективной мембраной. Смола на основе полиаминоамид-эпихлоргидрина получается аналогично методике, описанной в примере 3 WO 92/22601, но используется мольное отношение эпихлоргидрина, увеличенное на 5% Раствор смолы имеет содержание сухого вещества 19% по массе, pH 5, а вязкость 19 мПз. Раствор смолы предварительно обрабатывается добавлением раствора гидроокиси натрия, полученного из 20 мл 50% NaOH и 85 мл воды, к 395 г раствора смолы при комнатной температуре. Полученный раствор смолы имеет содержание сухого вещества 15% по массе. Раствор смолы, обработанный предварительно щелочью, помещается в химический стакан, охлаждаемый на ледяной бане, и непрерывно прокачивается через второй отсек со скоростью 5 л/ч. Кроме того, первоначально 1 М раствор гидроокиси натрия непрерывно прокачивается через первый и анодный отсеки соответственно, а первоначально 0,1 М раствор хлористого натрия непрерывно прокачивается через третий отсек. Начальный электрический ток составляет 10 А, а напряжение 9,5 В. Через 3 часа к предварительно обработанному раствору смолы добавляется 5 мл 50% раствора NaOH. Через 4,5 часа процесс останавливается. Щелочный раствор смолы (pH

Электродиализное устройство типа, показанного, в основном, на фиг.4, содержащее биполярную мембрану, используется для электродиализной обработки (очистки) раствора смолы на основе полиаминоамид-зпихлоргидрина, полученного, как описано в примере 3. 395 г раствора смолы разбавляется 105 мл воды с поучением содержания сухого вещества 15% по массе. Растворы смолы охлаждаются на ледяной бане и непрерывно прокачиваются через второй отсек со скоростью 7,5 л/ч. Кроме того, первоначально 1 М раствор серной кислоты и вода непрерывно прокачиваются через отсеки, как показано на фиг.4. Электрический ток и напряжение доводятся до 5,0 А и 18-30 В соответственно. Через 1 час 50 мин электродиализная обработка (очистка) останавливается и раствор смолы нагревается до 30oC и выдерживается при этой температуре до достижения вязкости 20 мПз. Значение pH доводится до 3,5 добавлением серной кислоты. Данные анализа раствора смолы представлены в табл.4
Аналитические данные определяются, как описано в примере 1. Пример 5
В этом примере определяется влагоупрочняющая эффективность растворов смолы, полученных в примерах 1-4. Опытные листы примерно 70 г-/м2 получаются на пилотной бумажной машине (скорость 2 м/мин, производительность 2 кг/ч). Шахта готовится из 30/35/35 смеси отбеленная сульфатная сосновая древесина /сульфатная березовая древесина/сульфатная буковая древесина, которая размалывается до 26o SR(Шоппер-Риглера). Наполнители ДХ40 (Omua) и глина (каолин В), каждый по 5% по массе, добавляются к массе при температуре 25%. Растворы смолы подаются на бумажную машину после разбавления массы. Консистенция массы у напорного ящика доводится до 0,3%, а pH поддерживается в пределах 7,2-7,8 для всех продуктов и концентраций и не регулируется. Температура цилиндров секции сушки регулируется до 60 oC/80 oC/90 oC/110 oC. Бумага сушится в течение 30 минут при 100oC в течение 2 ч перед испытанием. Бумажные ленты погружаются в дистиллированную воду на 5 минут при 23oC перед определением разрывной длины с использованием гидродинамического тестера Alwetron THI (Gockeland Co, GmbH, Мюнхен). Результаты испытаний представлены в табл. 53
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10