Теплообменник
Изобретение предназначено для применения в области теплообменной техники и может быть использовано при создании теплообменников ожижителей атомсферного воздуха двигателей ЖВРД, авиационных и наземных газотурбинных установок, в криогенной технике. Теплообменник содержит секции с подводящими и отводящими патрубками, трубчатые теплообменные элементы, концы которых установлены в днищах, помещенных в коллекторы, согласно изобретению в днищах между концами теплообменных элементов выполнены сквозные каналы. Днище теплообменника имеет форму шестигранника, который является составной частью сотовой матрицы, что обеспечивает наиболее плотную упаковку. В конструкции используют трубчатые теплообменные элементы с выполненными на наружной поверхности винтовыми каналами под углом наклона 45o к оси, которые образуют на внутренней поверхности трубки эквидистантные выступы. Подводящий и отводящий патрубки расположены перпендикулярно продольной оси трубчатых теплообменных элементов, имеют в поперечном сечении форму крыла, что при прохождении потока рабочего тела (например, воздуха) позволяет им участвовать в создании подъемной силы. Подводящий и отводящий патрубки имеют оребренную поверхность, что способствует интенсификации процесса теплообмена и обеспечивает им прочностные характеристики. Техническим результатом является снижение массы теплообменника с возможностью обеспечения схемы ток - противоток при широком варьировании мощностей. 5 з.п.ф-лы, 8 ил.
Изобретение относится к теплообменной технике, а именно к теплообменникам.
В настоящее время одной из основных проблем при создании теплообменников является улучшение его массовых характеристик. Известен блочный теплообменник с индивидуальным подводом одного теплоносителя и общим поперечным подводом другого теплоносителя, содержащий две цилиндрические пластины, расположенные параллельно друг другу, в которых выполнено заданное количество сквозных отверстий, внутрь которых введены теплообменные трубы, принадлежащие теплообменным ячейкам. Головки установлены по окружности боковых участков пластин и закрывают эти участки. Под давлением, направленным к центру от боковой стороны головок по боковым участкам пластин, происходит формирование единой конструкции, состоящей из труб пластин и головок. При этом по сторонам труб проходит камера горячего дутья. Процесс теплообмена осуществляется между средой в камере и вторичным носителем тепла (заявка Японии N 54-13010, МКИ F 28 D 7/00, B 21 D 53/2 - прототип). Данный теплообменник не обеспечивает равномерного теплообмена и плотного расположения теплообменных элементов по всему сечению теплообменника, а также движения компонентов, участвующих в теплообмене по схеме "ток - противоток", которая является наиболее эффективной при ограничении возможных потерь давления в тракте. Это приводит к снижению эффективности теплообмена и обеспечивает сравнительно низкие массовые характеристики. Целью настоящего изобретения является снижение массы теплообменника с возможностью обеспечения схемы "ток - противоток" при широком варьировании мощностей. Поставленная цель достигается тем, что в предложенном теплообменнике, выполненном в виде секции, содержащей подводящий и отводящий патрубки, трубчатые теплообменные элементы, концы которых установлены в днищах, помещенных в коллекторы, в днищах между концами теплообменных элементов выполнены сквозные каналы с гидравлическими характеристиками, близкими к характеристикам основного рабочего трубчатого участка, днище теплообменника имеет форму шестигранника, который является составной частью сотовой матрицы, обеспечивающей наиболее плотную упаковку, подводящий и отводящий патрубки, расположенные перпендикулярно к продольной оси трубчатых теплообменных элементов, имеют в поперечном сечении форму крыла, что позволяет при прохождении потока рабочего тела (например, воздуха) патрубкам участвовать в создании подъемной силы. Для максимального использования всей поверхности теплообменника в процессе теплопередачи подводящий и отводящий патрубки имеют развитую (оребренную) поверхность, что способствует интенсификации теплообмена и обеспечивает им улучшенные прочностные характеристики. На наружной поверхности трубчатых теплообменных элементов выполнены винтовые каналы под углом наклона
2 - подводящее днище,
3 - отводящее днище,
4 - сквозные каналы в днище,
5 - внутренние коллекторы днищ,
6 - подводящий патрубок,
7 - отводящий патрубок,
8 - ребра,
9 - лучевые каналы,
10 - подводящие каналы. Предложенный теплообменник содержит трубчатые теплообменные элементы - 1, которые соединяются с днищами, подводящим 2 и отводящим 3, имеющими форму шестигранника, в которых выполнены сквозные каналы 4 с гидравлическими характеристиками, близкими к основному рабочему трубчатому участку сборки, внутренние коллекторы днищ 5 являются промежуточным соединением между патрубками для подвода 6 и отвода 7 рабочих тел и трубчатыми теплообменными элементами 1. Патрубки 6, 7 расположены перпендикулярно к трубчатым элементам 1 и имеют ребра 8, причем поток рабочего тела из подводящих патрубков распределяются по трем лучевым каналам 9, подводящим каналам 10 и далее в теплообменные элементы 1. Предложенный теплообменник работает следующим образом. I рабочее тело (например, хладагент) подводится к днищу 2 по подводящему патрубку 6, распределяется по внутреннему коллектору днища 5, который обеспечивает подвод рабочего тела непосредственно к трубчатым теплообменным элементам 1. Пройдя через трубчатые теплообменные элементы 1, отводящее днище 3 и внутренний коллектор днища 5, I рабочее тело попадает в отводящий патрубок 7. Винтовая закрутка трубок 1 способствует турбулизации потока, что интенсифицирует теплообмен. Набегающий поток II рабочего тела (например, воздуха) обтекает отводящий патрубок 7, далее через сквозные каналы 4 в отводящем днище 3 поступает на основной теплообменный участок, омывая трубки 1, проходит через сквозные каналы 4 подводящих днищ 2 и, обтекая подводящий патрубок 6, поступает на выход. Наиболее эффективно настоящее изобретение может быть использовано при создании теплообменников ожижителей атмосферного воздуха двигателей ЖВРД, авиационных и наземных газотурбинных установок, криогенной техники.
Формула изобретения

РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8