Способ раскалывания каменных материалов невзрывчатыми разрушающими составами
Изобретение относится к области строительных и горных работ и может быть использовано для раскалывания искусственных и естественных каменных материалов. Техническим результатом изобретения является гарантированное получение раскола каменных материалов с наименьшими затратами. Способ раскалывания каменных материалов невзрывчатыми разрушающими составами включает устройство полостей, например шпуров, для размещения состава, приготовление рабочей смеси НРС с водой и заполнение ею полостей и определяют расстояние между полостями в ряду по физически и экспериментально обоснованной расчетной формуле, а также путем использования наклонных полостей минимально допустимой длиной. 1 табл., 7 ил.
Изобретение относится к области строительных и горных работ и может быть использовано для раскалывания искусственных и естественных каменных материалов (бетона и скальных горных пород).
Известен способ разрушения каменных материалов невзрывчатыми разрушающими составами (см. патент Японии N 63-35799, кл. E 21 C 37/00 от 02.08.84, опубликован 18.07.88), когда пробуренные в материале шпуры (или скважины) заполняют невзрывчатым разрушающим составом (HPC), и затем подают в шпуры воду, смешиваясь с которой HPC сильно увеличивает свой объем и создает за счет этого cтатические напряжения в материале, которые разрушают (раскалывают) его. Недостатком этого способа является отсутствие рекомендаций по расположению шпуров в раскалываемом материале, что препятствует применению способа. Известен принятый за прототип способ раскалывания каменных материалов невзрывчатыми разрушающими составами, включающий бурение шпуров для размещений состава, приготовление рабочей смеси HPC с водой и заполнение ею шпуров (см. "Руководство по применению смеси известковой для горных и буровых работ СИГВ (аналог HPC-I) при разрушении прочных хрупких материалов", изд. ВНИИСТРОМ, М.,1997 г.). В этом способе в плоскости желаемого раскола каменного материала бурят ряды шпуров, приготавливают рабочую смесь HPC путем смешивания порошка с водой в количестве 28% от массы порошка и заполняют шпуры рабочей смесью, которая в процессе расширения раскалывает материал. Расстояние между шпурами в ряду принимают по формуле












где С - коэффициент, учитывающий тип раскалываемого материала, равный для бетона 2,1, для скальных горных пород - 4,0; K - коэффициент, учитывающий относительную (в диаметрах) длину полостей (шпуров), составляющий:
L/d 1,5; 3; 5; 10; 15; 20; 30; 50,
KL 0,4; 0,55; 0,65; 0,85; 0,9; 0,95; 0,97; 0,99
P - развиваемое HPC напряжение в стенках полостей при стандартизованных (L

ToC 25; 20; 15; 10; 5,
KT 1,0; 0,87; 0,72; 0,55; 0,30
Кd - коэффициент, учитывающий диаметр полости d, составляющий:
d,мм 50; 40; 30; 20; 10,
Kd 1,0; 0,88; 0,74; 0,53; 0,26
[


[


где значение коэффициента пропорциональности К приближенно составляет для интрузивных основных пород (базальт, габбро, диабаз) 0,1, для гранитов и гранитоидов - 0,05, осадочных и метаморфических пород (известняк, доломит, мрамор и т.п.) - 0,08 (см. Азаркович А.Е., Шуйфер М.М. Классификация скальных массивов по сопротивляемости трещинообразованию при взрыве. "Горный журнал", 1989, N 7). Расстояние от шпуров 1 до боковой открытой поверхности объекта 3 (фиг.1) и расстояние между рядами шпуров принимают равным W=0,5а при необходимости разрушения материала по этим линиям (например, при разрушении бетонных фундаментов) и W= (1-1,5)а при необходимости сохранить целостность откалываемого блока (например, отдельных монолитов горных пород). По окончании устройства полостей приготавливают рабочую смесь HPC, для чего порошок HPC перемешивают с водой в количестве B=0,32A, где А - содержание (по массе) в HPC его основного компонента - оксида кальция CaO. Для состава НРС-1 используют количество воды, равное 28% массы порошка (содержание CaO в НРС-1 составляет 87,5%). После тщательного перемешивания порошка с водой смесью заполняют первый ряд шпуров I (фиг.1). Следующий ряд II заполняют через 8-10 часов после первого и т. д. Раскалывание материала под воздействием HPC и образование трещин 4 происходит примерно через сутки после заполнения полостей. Физическое обоснование предлагаемого способа следующее. HPC, размещенное в полости, оказывает на окружающий материал статическое компрессионное действие. При большой по сравнению с диаметром длине полости величина возникающих в материале напряжений может быть определена из классического решения задачи сопромата об осесимметричном нагружении толстостенного цилиндра внутренним давлением (см. Н.М.Беляев "Сопротивление материалов "Гостехтеориздат", М., 1953). В стенках цилиндра возникают радиальные сжимающие и тангенциальные растягивающие




где P - статическое давление внутри цилиндра; rо - внутренний радиус цилиндра; rн - наружный радиус цилиндра; r - расстояние от оси цилиндра до рассматриваемой точки в материале цилиндра. В случае, если наружный радиус цилиндра много больше внутреннего (rн >> ro), что характерно для действия HPC в плоскости ряда шпуров, расчетные формулы упрощаются до вида




Схема возникновения напряжений от действия HPC в материале для плоскости расположения ряда шпуров 1 (вид в плане) представлена на фиг.3. Образование трещины 2 является результатом воздействия растягивающих напряжений в плоскости B-B' приложенных в точках А, С и С'. В т. A, расположенной по линии между двумя соседними шпурами посредине между ними, складываются тангенциальные растягивающие напряжения. Кроме того, в плоскости B-B' геометрически складываются радиальные напряжения от соседних шпуров, что создает противоположно направленные от плоскости расположения шпуров растягивающие усилия. По величине они переменны в зависимости от угла


где а - расстояние между шпурами. Растягивающие напряжения в т. т. C и C' как следствие геометрического сложения сжимающих напряжений составляют

Исследование на экстремум функции cos2





откуда

или, переходя к диаметру шпуров d,

Допустимое расстояние W от шпура 1 до боковой открытой поверхности объекта 4 (фиг.3) при необходимости разрушения в этом направлении определяется по формуле (2) при r = rн = W, что приводит для т. D

откуда при




Оценки показывают, что за счет взаимодействия соседних шпуров допустимое значение W может увеличиться, но не более, чем в 1,5 раза. Из сравнения с формулой (3) следует, что для возможности разрушения должно соблюдаться условие W






где обозначения те же, что выше. При r >> r решение упрощается до вида

Соответственно для рассматриваемого нами случая



Интегрируя обе части этого выражения по l, учитывая


Расчет по формуле (4) дает значения, показанные в табл. 1, которые были отнесены к величине






где m - мощность раскалывания. Экспериментально установлено, что напряжения, развиваемые HPC на стенках шпуров, зависят от температуры каменного материала и от диаметра шпуров. Экспериментальные графики таких зависимостей представлены на фиг. 6 и 7. На их основе получены значения поправочных коэффициентов, учитывающих температуру материала KT и диаметр шпуров Kd, используемые при реализации предлагаемого способа. С учетом изложенного формула (3) преобразуется к виду

В выполненной нами обобщающей работе (техническом отчете) "Обзор и анализ данных о свойствах и применении невзрывчатых разрушающих составов (ООО "Гидроспецпроект", М., 1997.) произведено детальное сравнение результатов расчета по формуле (5) с фактически применявшимися на большом числе объектов (бетон и скальные горные породы) значениями расстояния между шпурами в ряду. При этом установлено, что формула (5) обеспечивает вполне приемлемые результаты для случаев раскалывания бетона, но систематически занижает допустимое расстояние между шпурами для раскалывания скальных пород. Последние ведут себя так, как будто их прочность на растяжение при воздействии HPC существенно меньше, чем установленная при испытаниях образцов. Физическая причина такого несоответствия состоит в проявлении статистической неоднородности скальных пород - наличии в них микротрещин, включений, ослаблений и т.п. При статической, длительной, постепенно нарастающей во времени нагрузке скальных массивов создаются условия для образования трещин именно по слабым местам. Бетон, являясь тоже неоднородным материалом, отличается равномерностью этой неоднородности, вследствие чего показатели статической прочности на растяжение для образцов и массивов бетона должны отличаться меньше, чем для скальных пород. Кроме того, показатели прочности бетона нормированы в СНиПе с необходимым в таких случаях коэффициентом запаса, а показатели прочности скальных пород принимают непосредственно по данным испытаний образцов. Изложенному толкованию соответствует наблюдаемая на практике некоторая извилистость трещин от действия HPC в скальных породах и их большая прямолинейность в бетоне. Таким образом, применительно к скальным породам в формуле (5) должна использоваться прочность на растяжение, полученная на образцах, с некоторым понижающим коэффициентом KM, т.е.

Численное значение коэффициента KM определено по имеющейся совокупности фактических данных обратным пересчетом с использованием формулы (5). Диапазон изменения коэффициента составляет KM = 0,2-0,4 при средней величине KM = 0,28. Последнее значение использовано для корректировки формулы (5) применительно к скальным породам. В результате получено

или в обобщенном виде для бетона и скальных пород

где С = 2,1 для бетона и С = 4,0 для скальных пород. В таком виде расчетную формулу используют в предлагаемом способе. Приведем примеры использования способа. Пример 1. С помощью НРС-1 выполняют раскалывание отдельно расположенного массивного бетонного блока с размерами 1,0х1,25х5,3 м (мощность х ширина х длина) в условиях реконструкции Голицынского автобусного завода. Марка бетона В 30, температура Т = 15oC. Имеющееся оборудование позволяет бурить шпуры диаметром d = 32 мм (0,032 м). При использовании предлагаемого способа работы ведут по схеме фиг. 1. Шпуры 1 бурят со стороны верхней открытой поверхности блока 2 рядами I, II, III и т. д. с тем, чтобы откалывать бетон полосами, поперечными к длинной стороне блока, начиная от боковой открытой поверхности 3. Перед бурением принимают угол



но по ограничению принимают sin




где С = 2,1 (для бетона), KL = 0,95 (при L/d=21,9), P = 50 МПа, KT = 0,72 (при Т = 15oC), Kd = 0,77 (при d = 32 мм), [


Расстояние от шпуров 1 ряда I до боковой открытой поверхности 3, а также расстояние между рядами шпуров I-II, II-III и т.д. принимают равным W = 1,5а = 1,5


что совершенно не обеспечивает требующихся результатов работы. Пример 2. С помощью НРС-1 выполняют отделение от скального массива гранитных монолитов объемом 28 м с размерами 1х4х7м (мощность х ширина х длина) в условиях работ на Ладожском гранитном карьере. По подошве отделяемого монолита в скальном массиве имеется естественная трещина с глинистым заполнителем. Прочность гранита на растяжение [




по ограничению принимают sin





где С = 4,0 (скальная порода), КL = 0,96 ( при



После того, как шпуры для отделения монолита I пробурены, их все заполняют рабочей смесью НРС-1, приготовленной аналогично примеру 1. Расход порошка НРС-1 на 1 м шпура - 2,5 кг. Откалывание монолита I путем образования трещин 4 происходит примерно через сутки после размещения рабочей смеси в шпурах, после чего выполняют работы по отделению монолита II и т.д. Общее число шпуров для откалывания монолита - 30, расход НРС-1 составляет 2,5 х 1,15 х 30 = 86,25 кг. Для сравнения укажем, что расстояние между шпурами по способу-прототипу должно составлять

что совершенно не согласуется с практическими данными. Пример 3. С помощью НРС-1 производят разрушение бетонной плиты с мощностью m=0,25 м в условиях реконструкции Голицынского автобусного завода. Бетон марки В 20, температура материала Т = 10oC. Применяемое оборудование позволяет бурить шпуры диаметром d = 42 мм (0,042 м). При использовании предлагаемого способа работы начинают с бурения шпуров с верхней открытой поверхности плиты. Шпуры бурят рядами, расстояние между которыми в два раза меньше, чем расстояние между шпурами в ряду, чтобы обеспечить полное разрушение плиты. Перед бурением принимают угол


чему соответствует


Расстояние между шпурами в ряду принимают по формуле

где С = 2,1 (бетон), КL = 0,86 (при



Расстояние между рядами шпуров W = 0,5 а = 0,16 м. После того, как шпуры пробурены, их заполняют рабочей смесью HPC, приготовленной аналогично примеру 1. Заполнение шпуров производят порядно, с интервалом времени для рядов 8-10 часов. Необходимое число шпуров на 1 м2 плиты составляет




- гарантированное раскалывание каменных материалов в заданных плоскостях;
- физическую и экспериментальную обоснованность расположения полостей, например шпуров, заполняемых HPC;
- наименьшую стоимость и трудовые затраты при выполнении работ за счет применения оптимального расположения полостей, заполняемых HPC.
Формула изобретения

причем угол наклона полостей к поверхности, с которой производят бурение, принимают из условия

где С - коэффициент, учитывающий тип раскалываемого материала - бетон или скальная порода;
KL - коэффициент, учитывающий относительную (в диаметрах) длину полостей;
d - диаметр полости, м;
Р - развиваемое НРС напряжение в стенках полости при стандартизованных условиях, МПа;
Kт - коэффициент, учитывающий температуру раскалываемого материала;
Kd - коэффициент, учитывающий диаметр полостей;
[


m - мощность раскалываемого материала, м.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8