Устройство для отбора проб жидкости из трубопровода
Устройство для отбора проб жидкости имеет пробозаборный элемент, установленный в трубопроводе пробозаборным отверстием, непрерывным или дискретным, навстречу потоку. Устройство имеет узел выхода, расположенный сверху на горизонтальном или наклонном участке трубопровода. Пробозаборный элемент выполнен в виде трубки с пробозаборным отверстием на боковой поверхности. Среднее значение толщины стенки трубки со стороны отверстия не возрастает от точки размещения в трубопроводе пробозаборной трубки и не превосходит 5 мм. Пробозаборное отверстие задается равенствами при помощи ширины Bj на расстоянии Нj от образующей трубопровода, расположенной с диаметрально противоположной стороны относительно узла выхода. Параметры Вj и Нj определяются равенствами при изменении j от 1 до 9 и для непрерывного пробозаборного отверстия и дискретного. Ширина пробозаборного отверстия является монотонной функцией и выбирается не менее величины где G = 9 мм, Dyo = 100 мм. Допустимое отклонение ширины отверстия от расчетного не более 0,2 мм, расстояние Нj - не более 10 мм, радиус закругления заостренных участков пробозаборного отверстия 0 - 5мм. На нижнем конце трубки установлен стабилизатор, ширина которого Хn на расстоянии Yn нижней границы отверстия определяется по расчетной формуле. Yn также определяется по расчетной формуле. Отклонение параметров Хn, Yn от расчетных не более 5 мм. Устройство позволяет осуществлять точный количественный и качественный учет перекачиваемой по трубопроводам жидкости, получать достоверную пробу во всем диапазоне обводненного потока трубопровода. 6 табл., 4 ил.
Изобретение относится к технике отбора проб жидкости из трубопровода и может найти применение в нефтедобывающей, нефтеперерабатывающей и других отраслях промышленности, где требуется высокая точность определения примесей.
Известно устройство для отбора проб жидкости из трубопровода, включающее систему трех пробозаборных трубок одного диаметра, установленную между фланцами при помощи пластины входными отверстиями навстречу потоку, одно из которых расположено на оси трубопровода, а два других отстоят от него на расстоянии 0,66 радиуса трубопровода (Пробоотборник. ГОСТ 2517-85 /п. 2.13.1.11/. [1]. Недостаток известной техники отбора проб - нарушение динамики отбора пробы вследствие засорения пробозаборных отверстий, и, как следствие, ухудшение представительности получаемой пробы. Как показывает практика, при применении известной техники отбора проб часто происходит частичное и даже полное заилевание одного-двух пробозаборных отверстий уже через 2-3 месяца работы. Кроме того, имеет место большая зависимость представительности пробы от расслоения потока, например, под воздействием силы гравитации. Известно устройство для отбора проб жидкости из трубопровода, включающее пробозаборный элемент из пяти пробозаборных трубок, узел выхода которых располагается сверху трубопровода, при этом оси входных отверстий пробозаборных трубок расположены параллельно оси трубопровода, направлены навстречу потоку и удалены друг от друга на расстояние 0.2 диаметра трубопровода, при этом входное отверстие центральной трубки расположено на оси трубопровода. Противоположные концы трубок входят в смесительную камеру, из которой проба поступает на анализ в блок контроля качества. Диаметры пробозаборных трубок к центру трубопровода уменьшаются в соответствии с соотношением 13:10:6 (Пробоотборник. ГОСТ 2517- 85 /п. 2.13, черт. 15/). [2]. Недостаток известной техники отбора проб - нарушение динамики отбора пробы вследствие засорения пробозаборных отверстий, и, как следствие, ухудшение представительности получаемой пробы. Как показывает практика, при применении известной техники отбора проб часто происходит частичное и даже полное заилевание одного-двух пробозаборных отверстий уже через 2-3 месяца работы. Кроме того, имеет место большая зависимость представительности пробы от расслоения потока, например, под воздействием силы гравитации. Техническим результатом данного изобретения является повышение достоверности получения представительной пробы путем уменьшения влияния факторов, способствующих засорению пробозаборного отверстия, а также повышение удобства при изготовлении и эксплуатации пробозаборных устройств. Для достижения технического результата в устройстве, которое включает пробозаборный элемент, устанавливаемый в трубопроводе прозаборным отверстием (непрерывным, дискретным) навстречу потоку, узел выхода пробозаборного устройства, расположенный сверху на горизонтальном, наклонном участке трубопровода, согласно изобретению, в качестве пробозаборного элемента используют трубку с пробозаборным отверстием на боковой поверхности, среднее значение толщины стенки которой со стороны выполнения пробозаборного отверстия не возрастает от точки размещения в трубопроводе пробозаборной трубки и не превосходит 5 мм, при этом пробозаборное отверстие задается при помощи ширины Bj пробозаборного отверстия на расстоянии Hj от образующей трубопровода, расположенной с диаметрально противоположной стороны относительно узла выхода пробозаборного устройства, следующим образом: в случае, если пробозаборное отверстие непрерывное, то параметры Bj и Hj при изменении номера j от 1 до 9 определяются равенствами (в миллиметрах) B1= 4,0; B2=4,0; B3=1,3; B4=2,0; B5=2,5; B6=3,4; B7=2,6; B8=1,9; B9=1,1. (1) а расстояние Hj при j=1-3 определяется по формулам H1=0, H2=3, H3=3,1 (2) (в миллиметрах), а при j=4-19 определяется по формуле Hj=kj
для случая, когда пробозаборное отверстие дискретное и состоит из системы пяти отверстий, то их ширина Bj на расстоянии Hj от образующей трубопровода, расположенной с диаметрально противоположной стороны относительно узла выхода пробозаборного устройства, определяется следующим образом:
параметры Bj и Hj первого отверстия задаются номерами j = 1 - 7 (j=1 соответствует началу, а j=7 - концу первого отверстия), параметры Bj и Hj второго отверстия задаются номерами j=8-10 (j=8 соответствует началу, a j=10 - концу второго отверстия), параметры Bj и Hj третьего отверстия задаются номерами j=11-13 (j=11 соответствует началу, a j=13 - концу третьего отверстия), параметры Bj и Hj четвертого отверстия задаются номерами j=14-16 (j=14 соответствует началу, a j=16 - концу четвертого отверстия), параметры Bj и Hj пятого отверстия задаются номерами j=17-19 (j=17 соответствует началу, а j= 19 - концу пятого отверстия), при этом ширина Bj (в миллиметрах) задается набором значений в зависимости от номера j=1-19:
B1= 4,0; B2=4,0; B3=1,2; B4=1,5; B5=1,9; B6=2,5; B7=3,3; B8=3,3; B9=3,2; B10= 3,0; B11=2,9; B12=2,9; B13=2,8; B14=2,8; B152,7; B16=2,6; B17=2,6; B18= 2,4; B19=2,3,
a расстояние Hj при j=1-3 определяется по формулам
H1=0, H2=3, H3=3,1 (6)
(в миллиметрах), а при j=4-19 определяется по формуле
Hj=kj

где коэффициенты kj задаются набором значений в зависимости от номера j= 4-19 следующими равенствами
k4= 0,024; k5= 0,064; k6=0,103, k7=0,156; k8=0,252; k9=320; k10=0,388; k11= 0,461; k12= 0,494; k13= 0,527; k14=0,629; k15=0,668;, k16=0,707; k17= 0,890; k18=0,908; k19=0,925, (8)
при этом ширина пробозаборного отверстия между точками, определяемыми при помощи равенств (1)-(8), является монотонной функцией от расстояния, внутренний диаметр d1 пробозаборной трубки выбирается не менее величины

Xn = d1 - 0,2 - (d1 - 1,2)


a Yn определяется равенствами
Yn = 12,2

если условный диаметр трубопровода Dy больше или равен 350 мм;
Yn = 0,0348571


если Dy < 350 мм;
номер n изменяется от 1 до 11, при этом отклонение параметров Xn и Yn от рассчетных составляет не более 5 мм. Наиболее удачно поставленная задача (повышение достоверности получения представительной пробы при уменьшении влияния факторов, способствующих засорению пробозаборного отверстия, повышения удобства при изготовлении и эксплуатации пробозаборных устройств) решается выбором конструкции пробозаборного устройства - в виде пробозаборной трубки с тонкой стенкой на боковой поверхности со стороны пробозаборного отверстия. При выполнении пробозаборного отверстия на тонкостенном участке пробозаборной трубки, происходит большой перепад давления на пробозаборном отверстии. В результате происходит диспергирование частиц потока и их вынос с периметра пробозаборного отверстия - так, экспериментально установлено, что при толщине стенки пробозаборной трубки со стороны выполнения пробозаборного отверстия не более 5 мм, пробозаборное отверстие по периметру оставалось чистым в течение 3-х месяцев эксплуатации, тогда как за этот же период времени проходимость пробозаборного элемента устройства прототипа [2] уменьшилась на 60% вследствие заиливания отверстий, при одновременном ухудшении качества пробы. Полость пробозаборной трубки заявляемого устройства при этом также оставалась чистой - размещение в нижней части пробозаборной трубки стабилизатора с указанными параметрами стабилизатора, - ширины стабилизатора Xn в зависимости от расстояния Yn от края пробозаборного отверстия, (формулы (9)- (11)), - способствует увеличению скорости перемещаемой вдоль пробозаборной трубки пробы и вместе с этим выносу из нижней части трубки тяжелых включений потока. Высокое качество пробы от заявляемого устройства обеспечивается в силу того, что при указанном выборе параметров пробозаборного отверстия, то есть выборе ширины Bj пробозаборного отверстия в зависимости от расстояния Hj от образующей трубопровода, расположенной с диаметрально противоположной стороны от узла выхода пробозаборника в соответствии с равенствами (1) - (8), происходит отбор пробы в соответствии с расходом потока и содержащихся в нем включений. Сохранение высокой представительности пробы при этом при изменении угла наклона трубопровода к горизонту имеет косвенное теоретическое обоснование (подтвержденное экспериментами, данные которых приводятся ниже): расслоение потока трубопровода уменьшается с увеличением угла наклона трубопровода к горизонту. Условие выполнения пробозаборного отверстия, когда его ширина между точками, определяемыми при помощи равенств (1) - (8), является монотонной функцией от расстояния, обеспечивает плавное изменение пробозаборного отверстия и удобство при его выполнении. Признак заявляемого устройства: толщина стенки со стороны выполнения пробозаборного отверстия не увеличивается в направлении ее размещения в трубопроводе при ограничении толщины стенки только со стороны выполнения пробозаборного отверстия, дает возможность выбирать пробозаборную трубку с толщиной стенки, обеспечивающей необходимую для нее прочность на излом, которому она подвержена вследствие набегающего потока трубопровода. При этом условие, чтобы внутренний диаметр d1 пробозаборной трубки был больше

для непрерывного отверстия 7 (фиг. 2) ширина Bj отверстия 7 определяется по номеру j=1-9 из формул (1); расстояние Hj от нижней образующей О трубопровода 2, на котором непрерывное отверстие 7 (фиг. 2) имеет ширину Bj, определяется с использованием формул (2)-(4) в зависимости от номера j=1-9;
- для дискретного отверстия 7 (фиг. 3), представляющего собой систему отверстий 9-13, параметр Bj отверстия 9 определяется по номеру j=1-7 из формул (5) (j=1 соответствует началу, a j=7 - концу отверстия 9); параметр Bj отверстия 10 определяется по номеру j=8-10 из формул (5) (j=8 соответствует началу, a j=10 - концу отверстия 10); параметр Bj отверстия 11 определяется по номеру j=11-13 из формул (5) (j=11 соответствует началу, a j=13 - концу отверстия 11); параметр Bj отверстия 12 определяется по номеру j=14-16 из формул (5) (j=14 соответствует началу, а j=16 - концу отверстия 12); параметр Bj отверстия 13 определяется по номеру j=17-19 из формул (5) (j=17 соответствует началу, j=19 - концу отверстия 13); расстояние Hj от нижней образующей О трубопровода 2, на котором дискретное отверстие 7 (фиг. 3, представляющее собой систему отверстий 9-13) имеет ширину Bj, определяется с использованием формул (6)-(8) в зависимости от номера j=1-19;
- расширение 8 отверстия 7 (фиг.2-3) выполнено с учетом гидравлического сопротивления пробозаборной трубки 1 и стабилизатора 6. Стабилизатор 6, фиг. 1, 4, имеет координаты (Xn,Yn), определяемые согласно формулам (9), (10) при условном диаметре Dy трубопровода 2, большим или равным 350 мм; и согласно формулам (9)-(11) при условном диаметре Dy трубопровода 2, меньшим чем 350 мм. Пробозаборное устройство (фиг. 1) предназначено для отбора пробы через отверстие 7 из потока трубопровода 2 в соответствии с расходом потока и содержащихся в нем включений. Для обеспечения резкого перепада давления на пробозаборном отверстии 7 (на фиг. 2 пробозаборное отверстие 7 представляет собой одно непрерывное отверстие; на фиг. 3 пробозаборное отверстие 7 - дискретное и представляет собой систему отверстий 9-13), которое сопровождалось бы диспергированием включений отбираемой пробы и выносом их с периметра отверстия 7, а также нижней части пробозаборной трубки 1, пробозаборная трубка 1 со стороны выполнения пробозаборного отверстия 7 имеет тонкую стенку - не более 5 мм, а в нижней части пробозаборной трубки 1 установлен стабилизатор 6 - экспериментально установлено, что при средней толщине стенки не более 5 мм иловых отложений по периметру пробозаборного отверстия 7 (непрерывного фиг. 2 и дискретного фиг. 3) не наблюдалось через интервал времени (порядка трех месяцев), при котором пробозаборник прототип [2] подлежал очистке - пробозаборные отверстия устройства прототипа [2] были заилены на 60 процентов). При этом условие, чтобы внутренний диаметр d1 пробозаборной трубки 1 был больше



Формула изобретения
В1 = 4,0; В2 = 4,0; В3 = 1,3; В4 = 2,0; В5 = 2,5; В6 = 3,4; В7 = 2,6; В8 = 1,9; В9 = 1,1; (1)
Н1 = 0; Н2 = 3; Н3 = 3,1; (2)
Hj = kj

где Dy - условный диаметр трубопровода, мм;
коэффициенты kj задаются следующими равенствами:
k4 = 0,093; k5 = 0,169; k6 = 0,282; k7 = 0,493; k8 = 0,734; k9 = 0,975, (4)
для случая, когда пробозаборное отверстие дискретное и состоит из системы пяти отверстий, то их ширина Bj на расстоянии Hj определяется следующим образом:
параметры Bj и Hj первого отверстия задаются номерами j = 1 - 7, где j = 1 соответствует началу, а j = 7 - концу первого отверстия;
параметры Bj и Hj второго отверстия задаются номерами j = 8 - 10, где j = 8 соответствуют началу, а j = 10 - концу второго отверстия;
параметры Bj и Hj третьего отверстия задаются номерами j = 11 - 13, где j = 11 соответствует началу, а j = 13 - концу третьего отверстия;
параметры Bj и Hj четвертого отверстия задаются номерами j = 14 - 16, где j = 14 соответствует началу, а j = 16 - концу четвертого отверстия;
параметры Bj и Hj пятого отверстия задаются номерами j = 17 - 19, где j = 17 соответствует началу, а j = 19 - концу пятого отверстия,
при этом ширина Bj задается при изменении номера j от 1 до 19 равенствами
В1 = 4,0; В2 = 4,0; В3 = 1,2; В4 = 1,5; В5 = 1,9; В6 = 2,5; В7 = 3,3; В8 = 3,3; В9 = 3,2; В10 = 3,0; В11 = 2,9; В12 = 2,9; В13 = 2,8; В14 = 2,8; В15 = 2,7; В16 = 2,6; В17 = 2,6; В18 = 2,4; В19 = 2,3, (5)
при этом расстояние Hj при j = 1 - 3 определяется по формулам
Н1 = 0; Н2 = 3; Н3 = 3,1, (6)
а при j = 4 - 19 - по формуле
Hj = kj

где коэффициенты kj задаются набором значений в зависимости от номера j = 4 - 19 следующими равенствами:
k4 = 0.024; k5 = 0,064; k6 = 0.103; k7 = 0,156; k8 = 0,252; k9 = 0,320; k10 = 0,388; k11 = 0,461; k12 = 0,494; k13 = 0,527; k14 = 0,629; k15 = 0,668; k16 = 0,707; k17 = 0,890; k18 = 0,908; k19 = 0,925; (8)
при этом ширина пробозаборного отверстия между точками, определяемыми при помощи равенств (1) - (8), является монотонной функцией от расстояния, внутренний диаметр d1 пробозаборной трубки выбирается не менее величины

Xn = d1 - 0,2 - (d1 - 1,2)


а Yn определяется по формулам
Yn = 12,2

если условный диаметр трубопровода Dy больше или равен 350 мм;
Yn = 0,0348571


если Dy < 350 мм;
номер n изменяется от 1 до 11, при этом отклонение параметров Xn, Yn от расчетных - не более 5 мм.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7