Высокоалюминиевый чугун
Изобретение относится к металлургии, в частности к износостойким, жаростойким, коррозионностойким и антифрикционным чугунам, для использования в автомобильной, нефтехимической и нефтеперерабатывающей промышленности при получении облегченных, в том числе тонкостенных фасонных отливок специального и общего назначения. Предложенный чугун содержит компоненты в следующем соотношении, мас. %: углерод 1,6 - 2,5, кремний 0,5 - 1,5, марганец 0,2 - 0,8, фосфор 0,04 - 0,1, сера 0,01 - 0,03, титан 0,005 - 0,12, алюминий 19 - 24, медь 0,1 - 3,0, никель 0,05 - 1,0, цирконий 0,01 - 0,2, ниобий 0,003 - 0,05, бор 0,003 - 0,01, кальций 0,05 - 0,5, магний 0,01 - 0,07, P3M 0,012 - 0,2 и железо - остальное. Техническим результатом изобретения является получение чугуна, обеспечивающего увеличение срока службы деталей, прочности, износостойкости и антифрикционных свойств в отливках разной толщины. В составе чугуна отсутствуют карбиды Fe3AlCx и Al4C3, что исключает опасность саморазрушения отливок. Вместе с тем чугун отличается малым удельным весом, высокой жаростойкостью и ростоустойчивостью, коррозионной стойкостью и паромагнитностью. 2 табл.
Изобретение относится к металлургии, в частности, к износостойким, жаростойким, коррозионностойким и антифрикционным чугунам для использования в автомобильной, нефтехимической и нефтеперерабатывающей промышленности при получении облегченных, в том числе тонкостенных, фасонных отливок специального и общего назначения.
Известен высокоалюминиевый чугун ЧЮ30, содержащий мас. %: 29-31 Al, 1,0-1,2 C, 0-0,5 Si,





Ni - 0,05 - 1,0
Nb - 0,003 - 0,05
B - 0,003 - 0,01
Ca - 0,05 - 0,5
Mg - 0,01 - 0,07
РЗМ - 0,012 - 0,2
Fe - Остальное
Титан и цирконий раскисляют расплав, уменьшают насыщенность чугуна водородом, образуют карбиды, снижая возможность образования карбида Al4C3, способствуют повышению прочности и твердости чугуна. Бор, образуя мелкодисперсные карбиды, а ниобий - мелкодисперсные карбонитриды, повышают износостойкость и жаростойкость чугуна. Медь, содержание которой увеличено до 3%, выпотевая на поверхностях трения и образуя с продуктами разрушения графита своеобразную смазку, способствует повышению антифрикционных свойств чугуна. РЗМ, магний и никель попадают в чугун в составе сфероидизирующих модификаторов; РЗМ и магний раскисляют расплав и сфероидизируют включения графита, никель повышает однородность структуры чугуна в отливках. Кальций раскисляет чугун, способствует улучшению шаровидной формы графита; при введении кальция более 0,5% ухудшается его усвоение жидким чугуном, что способствует образованию неметаллических включений в чугуне. Указанные верхние значения содержаний титана - 0,12%, циркония - 0,2%, бора - 0,01% и ниобия - 0,05% являются предельными, выше которых указанные элементы приводят к резкому снижению графитизирующей способности чугуна, охрупчиванию, повышению твердости и снижению обрабатываемости. Указанные нижние значения содержания элементов титана - 0,005%, циркония - 0,01%, ниобия - 0,003%, бора - 0,003% являются предельными, так как при более низких значениях их положительное влияние не проявляется. При содержании меди более 3% снижаются механические свойства чугуна, а эффект повышения антифрикционных свойств усиливается незначительно, кроме того увеличивается удельный вес чугуна; введение меди в чугун менее 0,1% практически не оказывает влияния на повышение антифрикционных свойств. Наиболее существенным является содержание в чугуне титана, циркиния, ниобия, бора, которые обеспечивают увеличение прочностных свойств и износостойкости, что позволяет одновременно увеличить и содержание меди до 3% и улучшить антифрикционные свойства чугуна. Примеры конкретного выполнения изобретения приведены в таблице 1. Структура и свойства чугунов приведены в таблице 2. Сравнительная оценка износостойкости проводилась в соответствии с ГОСТ 23.208-79 в абразивной среде (электрокорунд) в условиях трения образцов d=30 мм и h=10 - 15 мм по пластине-эталону из Ст 45. По потере массы рассчитывался коэффициент износостойкости. Таким образом из таблицы 2 видно, что в результате реализации предмета изобретения получены:
1. Высокоалюминиевый чугун для тонкостенных облегченных фасонных отливок, в структуре которого за счет введения циркония, ниобия и меди отсутствуют карбиды Fe3AlCx и Al4C3 при различных толщинах стенки отливки, что обеспечивает увеличение прочности и улучшение обрабатываемости (чугун 1);
2. Высокоалюминиевый чугун, в котором за счет введения циркония, бора, титана и ниобия обеспечивается повышенная износостойкость при отсутствии в структуре карбида Al4C3, что исключает опасность саморазрушения отливок с различными толщинами стенок и увеличивается срок их службы (чугун 2);
3. Высокоалюминиевый чугун, в котором благодаря введению меди и повышению графитизирующей способности за счет повышения содержания углерода обеспечивается повышение антифрикционных свойств. При этом в структуре чугуна отсутствует карбид Al4C3, что исключает опасность саморазрушения отливок с различными толщинами стенок (чугун 3);
4. Высокоалюминиевый чугун, в котором за счет введения на верхнем уровне алюминия, редкоземельных металлов, титана и кальция обеспечиваются механические свойства и износостойкость на уровне, превышающем уровень прототипа (чугун 4). Список литературы. 1. ГОСТ 7769-82. Чугун легированный для отливок со специальными свойствами. Госкомитет СССР по стандартам. М., 1987.
Формула изобретения
Углерод - 1,6 - 2,5
Кремний - 0,5 - 1,5
Марганец - 0,2 - 0,8
Фосфор - 0,04 - 0,1
Сера - 0,01 - 0,03
Титан - 0,005 - 0,12
Алюминий - 19 - 24
Медь - 0,1 - 3,0
Никель - 0,05 - 1,0
Цирконий - 0,01 - 0,2
Ниобий - 0,003 - 0,05
Бор - 0,003 - 0,01
Кальций - 0,05 - 0,5
Магний - 0,01 - 0,07
РЗМ - 0,012 - 0,2
Железо - Остальное
РИСУНКИ
Рисунок 1, Рисунок 2