Способ получения биосовместимого материала
Изобретение относится к области медицины, а именно к офтальмологии, и может быть использовано для изготовления внутриглазных имплантатов, а также контактных линз и слезоотводящих приспособлений. Технический результат: получен биосовместимый материал для внутриглазных имплантатов и контактных линз, способный предотвращать процесс фиброзообразования на своей поверхности. Проводят объемную радикальную полимеризацию мономеров акрилового и/или винилового ряда в присутствии воды и сшивателя, а в полимеризуемую смесью добавляют нативный геперин или химически модифицированный геперин с реакционноспособными группами в молекуле в количестве 20-200 мкг/мл смеси, или гликозаминогликоны в нативном или модифицированном виде в количестве 40-200 мкг/мл. При этом полимеризацию проводят либо с помощью облучения, либо с помощью вещественного инициирования. 2 з.п.ф-лы.
Изобретение относится к области медицины, а именно к офтальмологии, и может быть использовано для изготовления внутриглазных имплантатов (интраокулярных линз - ИОЛ, дренажей, кератопротезов, внутрироговичных линз, заменителей стекловидного тела и др.), а также контактных линз и слезоотводящих приспособлений.
Известен способ получения пластичного материала из коллагена для офтальмологии (патент РФ N 2033165), который заключается в сополимеризации сорбированного на поликремневую кислоту коллагена с мономерами акрилового и/или винилового ряда путем радиационного облучения. Такой материал является биосовместимым, однако он не обладает антифиброзными свойствами, что является причиной возникновения экссудатов. Задачей изобретения является разработка способа получения биосовместимого материала для внутриглазных имплантатов и контактных линз, обладающего антифиброзными свойствами, т.е. способного предотвращать процесс фиброзообразования на своей поверхности. Техническим результатом, достигаемым при использовании изобретения, является снижение или отсутствие экссудативных реакций на внутриглазной имплантат или контактную линзу. Технический результат предлагаемого изобретения достигается тем, что проводят объемную радикальную полимеризацию мономеров акрилового и/или винилового ряда в присутствии воды и сшивателя, отличающийся тем, что в полимеризуемую смесь добавляют нативный гепарин или химически модифицированный гепарин с реакционноспособными группами в молекуле в количестве 20 - 2000 мкг/мл смеси, или гликозаминогликаны в нативном или модифицированном виде в количестве 40 - 2000 мкг/мл. Одним из вариантов способа является тот, в котором полимеризацию проводят с помощью облучения. Одним из вариантов является тот, в котором полимеризацию проводят с помощью вещественного инициирования. Гликозаминогликаны представляют собой полисахариды, построенные из повторяющихся дисахаридных компонентов, которые обычно содержат аминосахара и уроновую кислоту. К гликозаминогликанам относятся гиалуроновая кислота, хондроитинсульфаты, кератансульфаты, гепарин, гепарансульфат, дерматансульфат. Все ГАГ являются полианионами благодаря присутствию в их структурах кислых сульфатных групп или карбоксильных групп уроновых кислот. С этой особенностью гликозаминогликанов связаны многие их функциональные свойства. ГАГ являются неотъемлемой частью соединительной ткани. Они активно участвуют в водно-солевом обмене, способны снижать воспалительную и экссудативную реакцию при травмах, стимулируют репарацию поврежденных тканей. Гепарин отличается от остальных ГАГ тем, что наряду с указанными свойствами обладает противосвертывающей активностью, а его комплексы с белками плазмы обладают фибринолитическим действием. То есть гепарин способен активно воздействовать как на процесс фибринообразования, так и на процесс лизиса свежего полимерного фибринового экссудата. Такие свойства гепарина частично объясняются высоким отрицательным зарядом на его молекуле. Высокая специфичность гепарина объясняет его высокую активность при низких концентрациях. Так, например, гепарансульфат, сходный по структуре с гепарином, также обладает противосвертывающей активностью, но по эффекту значительно уступает гепарину. Поскольку удельная активность гепарина зависит от способа и источника выделения, количество гепарина, выраженное в весовых единицах, варьируется в более широких пределах. В качестве химически модифицированного гепарина может быть использован гепарин, содержащий одну или несколько реакционноспособных групп на молекулу, например двойных связей (Ж.Всесоюзного химического общества им. Д.И. Менделеева, том XXX, N 4, 1985, 402-410). Гликозаминогликаны также могут быть использованы в модифицированном виде. При использовании гепарина или ГАГ в нативном виде в процессе полимеризации происходит физическое включение молекул данных веществ в полимеризуемую полимерную матрицу. При этом часть этих молекул вымывается со временем из поверхностного слоя полимера. Если в полимеризуемую смесь добавляют химически модифицированный гепарин или ГАГ, то в процессе полимеризации происходит как физическое включение данных веществ, так и ковалентное присоединение их к полимерной матрице. В последнем случае получаются полимеры более устойчивые к внешним воздействиям, таким как процесс вымывания. Интервал концентрации гепарина выбран экспериментально. Для этого получали полимерный материал по заявляемому способу в виде тонких пластин, кусочки которых имплантировали в переднюю камеру кролика. При концентрации гепарина в полимеризуемой смеси менее 20 мкг/мл в первые 4 - 7 суток после имплантации на поверхности полимера наблюдали фибриновый экссудат, который затем исчезал. При концентрации гепарина выше 20 мкг/мл в первые сутки после операции поверхность полимера была практически чистая. При концентрации гепарина в полимеризуемой смеси выше 2000 мкг/мл наблюдали после имплантации повышенную кровоточивость. Интервал ГАГ подбирали экспериментально аналогичным способом. При этом концентрация ГАГ от 40 до 2000 мкг/мл полимеризуемой смеси оказалась оптимальной и получаемые полимеры не вызывали фибринообразования. Биосовместимость и антифиброзные свойства получаемых полимеров оценивали в эксперименте на глазах кроликов. С этой целью небольшие стерильные кусочки полимера (примерно 2х3 мм, толщиной
Формула изобретения
1. Способ получения биосовместимого материала, включающий объемную радикальную полимеризацию мономеров акрилового и/или винилового ряда в присутствии воды и сшивателя, отличающийся тем, что в полимеризуемую смесь добавляют нативный гепарин, или химически модифицированный гепарин с реакционноспособными группами в молекуле в количестве 20-2000 мкг/мл смеси, или гликозаминогликаны в нативном или модифицированном виде в количестве 40-2000 мкг/мл. 2. Способ получения биосовместимого материала по п.1, отличающийся тем, что полимеризацию проводят с помощью облучения. 3. Способ получения биосовместимого материала по п.1, отличающийся тем, что полимеризацию проводят с помощью вещественного инициирования.PC4A - Регистрация договора об уступке патента Российской Федерации на изобретение
Номер и год публикации бюллетеня: 10-2004
(73) Патентообладатель:Общество с ограниченной ответственностью "Научно-экспериментальное производство Микрохирургия глаза"
(73) Патентообладатель:ООО "Научно-экспериментальное производство "Микрохирургия глаза"
Договор № 18497 зарегистрирован 20.02.2004
Извещение опубликовано: 10.04.2004