Ракетный двигатель твердого топлива
Двигатель предназначен для использования в ракетной технике. Он содержит бронированный по наружной поверхности заряд, установленный с кольцевым зазором в камеру сгорания, уплотнение, образующее застойную зону, газодинамически сообщенную с камерой сгорания. При этом площадь поперечного сечения кольцевого зазора выполнена с увеличением в сторону уплотнения. Площадь поперечного сечения на входе в кольцевой зазор (Fвх) определяется из соотношения Fвх < Fкр, где Fкр - площадь критического сечения двигателя. Конструкция двигателя позволяет избежать прогаров и уноса бронепокрытия с заряда, уменьшить толщины бронепокрытия и теплоизоляции внутренней поверхности камеры сгорания, а следовательно, уменьшить дымообразование на начальном участке работы двигателя и повысить коэффициент заполнения камеры сгорания зарядом. 1 ил.
Изобретение относится к ракетной технике, в частности к ракетным двигателям твердого топлива (РДТТ) с вкладным бронированным пороховым зарядом.
Известен РДТТ, содержащий камеру сгорания с вкладным бронированным зарядом, описанный в [1]. К недостаткам такой конструкции относится возможное нарушение целостности бронепокрытия заряда и стенок камеры сгорания в процессе работы РДТТ вследствие сквозного течения пороховых газов в зазоре между внутренней стенкой камеры сгорания и бронированной поверхностью заряда, и как следствие - аномальная работа РДТТ (его разрушение). Указанный недостаток частично устраняется в конструкции РДТТ, описанной в [2]. РДТТ содержит бронированный по наружной поверхности заряд, установленный в камере сгорания с кольцевым зазором, имеющим постоянную площадь поперечного сечения по всей длине, уплотнение, выполненное в кольцевом зазоре и образующее застойную зону. Застойная зона на входе газодинамически сообщена с камерой сгорания, а уплотнение препятствует перетеканию газа через кольцевой зазор. Однако при срабатывании РДТТ газы, имеющие высокую температуру и скорость, при заполнении кольцевого зазора с постоянной площадью поперечного сечения будут не только прогревать, но и частично размывать бронепокрытие практически на всей длине застойной зоны, что может ухудшить управление ракетой в полете из- за повышенной задымленности трассы. При этом чем больше длина застойной зоны, тем интенсивнее воздействие газов не только на бронепокрытие, но и стенки камеры сгорания. Увеличение толщины бронепокрытия заряда, а также теплозащитного покрытия внутренней поверхности камеры сгорания проблемы не разрешает, однако уменьшает коэффициент заполнения камеры сгорания зарядом и увеличивает пассивную массу двигателя, а соответственно и ракеты. Целью настоящего изобретения является уменьшение дымообразования на начальном участке работы РДТТ и повышение коэффициента заполнения камеры сгорания зарядом. Указанная цель достигается тем, что в РДТТ, содержащем бронированный по наружной поверхности заряд, установленный с кольцевым зазором в камеру сгорания, уплотнение, выполненное в кольцевом зазоре и образующее застойную зону, газодинамически сообщенную на входе с камерой сгорания, площадь поперечного сечения кольцевого зазора выполнена с увеличением в сторону уплотнения, причем площадь поперечного сечения на входе в кольцевой зазор Fвх определяется из соотношения Fвх > Fкр, где Fкр= (
Формула изобретения
Ракетный двигатель твердого топлива, содержащий бронированный по наружной поверхности заряд, установленный с кольцевым зазором в камеру сгорания, уплотнение, образующее застойную зону, газодинамически сообщенную с камерой сгорания, отличающийся тем, что площадь поперечного сечения кольцевого зазора выполнена с увеличением в сторону уплотнения, причем площадь поперечного сечения на входе в кольцевой зазор (Fвх) определяется из соотношения Fвх > Fкр, где Fкр= (
РИСУНКИ
Рисунок 1