Сварочная проволока для наплавки колесных пар железнодорожного транспорта
Изобретение относится к области сварочных металлических материалов. Сварочная проволока для наплавки колесных пар железнодорожного транспорта содержит следующие компоненты, мас.%: углерод - 0,06-0,1; кремний - 0,5-0,8; марганец - 1,3-1,7; никель -0,05-0,3; хром - 0,1-0,3; медь - 0,05-0,3; алюминий - 0,01-0,1; азот - 0,01-0,05, сера - 0,005-0,04; фосфор - 0,005-0,035; железо -остальное, при этом суммарное содержание углерода и азота не превышает 0,11%, суммарное содержание меди, никеля и марганца не превышает 1,9%. Технический эффект заключается в повышении эксплуатационной надежности и общего ресурса работы ремонтируемых колесных пар железнодорожного транспорта. 2 табл.
Изобретение относятся к области сварочных металлических материалов, используемых в различных отраслях машиностроения при производстве и ремонте промышленного и транспортного оборудования.
Известны сварочные материалы, применяемые для сварки и наплавки конструкционных углеродистых и высокопрочных бандажных сталей (например, сварочная проволока и электроды марок СВ-08Т2С и ОЗН-250, а также другие аналоги, указанные в научно-технической и патентной литературе [1-3]). Однако указанные материалы не обеспечивают требуемого уровня основных нормативных и сдаточных характеристик, определяющих работоспособность наплавленного поверхностного слоя деталей механической части подвижного состава в сложных условиях эксплуатации железнодорожного транспорта. Наиболее близкой к заявляемой композиции по назначению и составу компонентов является низколегированная сталь перлитного класса марки 09Г2С [1, 2], содержащая мас.%: Углерод -





Данный марочный состав рекомендуется использовать в качестве конструкционного материала для изделий химического и нефтяного машиностроения, а также сварных конструкций подвижного состава железнодорожного транспорта [1, 2] . Однако, сварочная проволока и электроды, изготовленные из стали известного состава, не обеспечивают требуемой стабильности основных физико-механических и служебных свойств, а следовательно, и работоспособности наплавленного металла в условиях знакопеременного циклического нагружения. При этом содержание легирующих и примесных элементов, во многом определяющих структурообразование и формирование требуемого комплекса свойств наплавленного металла, не контролировалось и находилось в весьма широких концентрационных пределах. Задачей настоящего изобретения является создание высокотехнологичной экономнолегированной стали с улучшенным комплексом физико-механических и служебных свойств для производства сварочной проволоки и электродов применительно к проблеме наплавки высоконагруженных колесных пар железнодорожного транспорта. Поставленная в заявке задача достигается изменением соотношения легирующих и примесных элементов, а также введением в состав заявляемой композиции оптимального количества алюминия и азота. Предлагается состав сварочной проволоки, содержащий, мас.%:
Углерод - 0,06 - 0,1
Кремнии - 0,5 - 0,8
Марганец - 1,3 - 1,7
Никель - 0,05 - 0,3
Хром - 0,1 - 0,3
Медь - 0,05 - 0,3
Алюминий - 0,01 - 0,1
Азот - 0,01 - 0,05
Сера - 0,005 - 0,04
Фосфор - 0,005 - 0,035
Железо - Остальное
При этом введено ограничение содержания некоторых элементов, определяющих требуемый уровень основных физико-механических и служебных свойств заявляемого материала:
- суммарное содержание углерода и азота не превышает 0,11%;
- суммарное содержание меди, никеля и марганца не превышает 1,9%. Соотношение указанных легирующих и примесных элементов выбрано таким образом, чтобы в процессе сварочно-наплавочных работ ремонтируемой техники обеспечивалось заданное структурное состояние наплавленного металла, как основы формирования важнейших характеристик работоспособности поверхностного слоя изделия. Введение в заявляемую композицию микролегирующих добавок алюминия и азота в указанном соотношении с другими элементами улучшает ее структурную и фазовую стабильность при технологических и сварочных нагревах, способствует образованию высокодисперсных частиц нитридов и оксидов (AlN, Al2O3) по всему объему зерна, что обеспечивает получение мелкозернистой структуры и повышение сопротивления металла наплавки хрупкому разрушению в условиях длительного динамического нагружения. Вместе с тем, как показали наши исследования, увеличение суммарного содержания углерода и азота выше указанного в формуле изобретения предела, снижает дисперсность образующихся фаз внедрения и затрудняет равномерность их распределения по объему зерна, что изменяет механизм формирования и закрепления дислокаций в процессе ударного и циклического нагружения. При этом существенно возрастает уровень внутренних структурных и сварочных напряжений, а также повышается склонность металла к образованию хрупких и усталостных трещин в условиях длительной эксплуатации оборудования. Выбор системы комплексного легирования заявляемой композиции предусматривает ограничение суммарного содержания ряда аустенитообразующих элементов (никеля, меди и марганца), во многом определяющих кинетику мартенситных превращений и положение критических точек стали в процессе технологических и сварочных нагревов. Превышение содержания вводимых элементов сверх указанного предела приводит к дестабилизации присутствующего в структуре остаточного аустенита и снижению мартенсит пои точки, что уменьшает эффективность их положительного влияния на весь комплекс физико-механических свойств наплавленного металла и приводит к ухудшению эксплуатационных характеристик поверхностного слоя изделия. Полученный более высокий уровень основных механических, технологических и служебных свойств заявляемого марочного состава сварочной проволоки обеспечивается комплексным легированием композиции в указанном соотношении с другими элементами. Лабораторией сварки кафедры "Технология металлов" ПГУПС совместно с ЦНИИ КМ "Прометей", АО "Ижорский завод". Дорожной химико-технической лабораторией Окт. ж. д. и др. предприятиями в соответствии с планом научно-исследовательских работ отрасли проведен комплекс лабораторных и опытно-промышленных работ по выплавке, пластической и термической обработке осваиваемой марки стали для изготовления опытной партии сварочной проволоки. Металл выплавлялся в металлургических индукционных и электродуговых печах емкостью от 100 до 500 кг и разливался в спички массой в 16, 50 и 100 кг. Полученный металл подвергался обработке давлением на промышленном кузнечно-прессовом и прокатном оборудовании с целью получения сварочной проволоки различного сортамента. Химический состав исследованных материалов, а также результаты определения основных механических и служебных свойств представлены в табл. 1 и 2. Ожидаемый технико-экономический эффект использования новой сварочной проволоки выразится в повышении эксплуатационной надежности и общего ресурса работы ремонтируемых колесных пар железнодорожного транспорта. Литература
1. Журавлев В.Н., Николаев О.И. Машиностроительные стали. Справочник., -М.: Машиностроение, 1981. 390 с. 2. ГОСТ 19282-73. 3. Адамец П., Завизион М.Я. Повышение работоспособности деталей подвижного состава при наплавке. - С-Пб.: изд-е Петербургского университета путей сообщения, 1995, 160 с.
Формула изобретения
Углерод - 0,06 - 0,1
Кремний - 0,5 - 0,8
Марганец - 1,3 - 1,7
Никель - 0,05 - 0,3
Хром - 0,1 - 0,3
Медь - 0,05 - 0,3
Алюминий - 0,01 - 0,1
Азот - 0,01 - 0,05
Сера - 0,005 - 0,04
Фосфор - 0,005 - 0,035
Железо - Остальное
при этом суммарное содержание углерода и азота не превышает 0,11%, суммарное содержание меди, никеля и марганца не превышает 1,9%.
РИСУНКИ
Рисунок 1, Рисунок 2