Изобретение относится к области технической химии, а именно к способу приготовления катализаторов для процесса Фишера-Тропша. Описывается способ приготовления катализатора для процесса Фишера-Тропша с нанесенным на одну из сторон каталитическим слоем, включающий использование в качестве соединений-предшественников растворов солей, которые наносятся на стенку трубки и образуют при прокаливании невосстанавливающиеся и восстанавливающиеся в водороде оксиды отличающийся тем, что в качестве соединений-предшественников используют порошкообразные вещества, состоящие из нелетучих, нерастворимых или малорастворимых соединений переходных металлов или их смесей и/или циркония, и/или щелочноземельных элементов или их смесей и алюминия, или различные сочетания всех индивидуальных и смешанных соединений вышеперечисленных элементов и алюминия, а процесс приготовления каталитического слоя включает смешение порошков, их размещение в формовочном устройстве, проницаемом для газообразных веществ, вместе с металлической трубкой, обработку в окислительной и/или влажной атмосфере формовочного устройства вместе с порошкообразными компонентами и металлической трубкой с последующим извлечением полученного изделия в виде трубки с каталитическим слоем, его сушкой и прокаливанием, при этом каталитический слой представляет собой высокопористое, толстослойное, самозакрепляющееся покрытие толщиной 0,6 - 10,0 мм, нанесенное на внешнюю или внутреннюю поверхность трубки. Технический результат - создание эффективного катализатора для процесса Фишера-Тропша удобным способом. 7 з.п. ф-лы, 2 табл.
Предлагаемое изобретение относится к области технической химии, а именно к способу приготовления катализаторов для процесса Фишера-Тропша.
Процесс Фишера-Тропша заключается в получении различных углеводородов путем гидрирования оксида углерода водородом и включает стадии полимеризации, олигомеризации, алкилирования и т.п. Кроме того, процесс Фишера-Тропша является экзотермическим и протекает при повышенных давлениях. Для поддержания высокой активности и селективности катализаторов в данной реакции помимо варьирования состава и условий приготовления необходима специальная организация каталитического слоя с целью снижения вероятности перегревов и снижения газодинамического сопротивления. Особенно отрицательно влияют на катализатор перегревы, сопровождающиеся закоксовыванием и дезактивацией катализатора [B.Jager, R.Espinoza "Advances in low-temperature Fisher-Tropsh synthesis", Catal.Today, 1995, v.23, p. 17-28].
Известны два основных варианта решения отмеченных выше проблем. В одном случае процесс проводят в жидкофазных условиях. При этом жидкая фаза выполняет роль реакционной и теплопроводящей среды одновременно, а катализатор в виде суспензии распределен в жидкой фазе. В другом - твердый катализатор в виде гранул, колец и т.п., образующих неподвижный слой, помещается внутри трубки, разделяющей газовое пространство с катализатором и жидкую фазу (воду), за счет нагревания которой осуществляется отвод тепла.
Так, в патенте Великобритании N 2188251 А (1987), М.кл.
4 B 01 J 37/024, С 23 С 4/04, описан катализатор на пористом носителе - силикагеле, содержащий металлы типа железа, никеля или кобальта, промотированные платиновыми металлами 8 группы Периодической таблицы. Аналогично, в патенте США N 4857497 (1989), М.кл.
4 B 01 J 21/06, 21/08; Европейском патенте N 0398420 В1 (1994), М. кл.
5 C 07 C 1/04, B 01 J 23/86, для приготовления катализаторов Фишера-Тропша использовали пористые носители, на которые наносили кобальт, цирконий, титан, хром либо дополнительно - платину или палладий. В ряде случаев патентовались неорганические, оксидные носители либо на основе оксидов алюминия, титана с нанесенным рутением, модифицированным бором, алюминием, галлием, индием, кремнием, германием, оловом мышьяком, висмутом [Европейский патент N 0221598 В1 (1991), М.кл.
5 B 01 J 23/89, С 07 С 1/04]; либо на основе "огнеупорных оксидов" с нанесенным металлом типа железа, кобальта и рутения [Европейский патент N 0466984 А1 (1990), М.кл.
5 С 07 С 1/04]. В Международном патенте WO 92/19574 (1992), М.кл.
5 С 07 С 2/02, B 01 J 29/04, описан композитный катализатор для процесса Фишера-Тропша, который включает в себя пористый субстрат, а также каталитический компонент, включающий носитель, состоящий из оксидов кремния, алюминия, циркония, тория или их смесей и слоя цеолита, и собственно катализатор Фишера-Тропша (активный компонент) на основе кобальта и промоторов, выбранных из Re, Ru, Pd, Pt, ThO
2, ZrO
2, Al
2O
3, MgO, MnO, а также добавок Li, Na, K, Ca, Mg или их смесей.
Катализатор, полностью заполняющий пространство внутри трубок, обладает рядом недостатков: а) низкая теплопроводность по слою катализатора приводит к значительным градиентам температуры как в самом слое, так и на границе катализатор - трубка, это существенно снижает гибкость температурного контроля, возможность регулирования селективности процесса, увеличивает вероятность закоксовывания катализатора; б) свободная засыпка катализатора в виде гранул или колец существенно увеличивает газодинамическое сопротивление и соответственно расходы на прокачивание газов; в) даже в случае использования сотовых структур, снижающих сопротивление, сохраняется высокая вероятность закоксовывания и выхода из строя трубки целиком, что существенно снижает эффективность работы реактора в целом. Замена трубки представляет собой крайне трудную процедуру, требующую остановки работы всего реактора.
В принципе, решение проблемы увеличения теплоотвода при снижении газодинамического сопротивления возможно путем нанесения активного компонента (катализатора) на одну из сторон металлической трубки в виде покрытия. Так, в патенте США N 4754092, М.кл.
4 С 07 С 1/04, 1988, описан способ приготовления катализатора гидрирования оксида углерода, включающий разбрызгивание в плазме порошка на непористую металлическую трубку. Катализатор состоит из непористого носителя и покрытия, которое включает активный компонент, содержащий по меньшей мере один из следующих элементов: Mo, V, Cr, Mn, Re, Fe, Ru, Os, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, и керамический оксид, содержащий по меньшей мере один из следующих элементов: Hf, Pb, Zr, Се, Ti, Nb, Та, Sn, In, Si, Al, La, Th, Mg, Sr, P, Ba. Точный состав покрытия и его толщина не патентовались. Однако в примерах описан катализатор, содержащий соединения на основе никеля и алюминия с покрытием толщиной 20-50 мкм.
В патенте Великобритании N 2188251, М.кл.
4 B 01 J 37/02; 1987, выбранном нами в качестве прототипа, описан способ приготовления "каталитической трубки" с нанесенным на внешнюю стенку каталитическим слоем, включающий электрохимическое нанесение губчатого металла, обеспечивающего хороший механический и тепловой контакт с трубкой; с последующей пропиткой растворами солей, образующими при термообработке "керамический оксид", не восстанавливающийся в водороде, и "восстанавливающийся оксид", выполняющий функции активного компонента. Толщина каталитического слоя у описанного в прототипе каталитического элемента составляла 0,5-0,6 мм, а удельная поверхность - 10-15 м
2/г. Именно маленькая толщина покрытия обуславливает недостатки представленных в патенте США N 4754092, М.кл.
4 С 07 С 1/04, 1988; патенте Великобритании N 2188251, М.кл.
4 B 01 J 37/02; 1987, катализаторов на металлических носителях по сравнению с обычными катализаторами для процесса Фишера-Тропша на пористых керамических носителях: 1) низкую активность; 2) преимущественную селективность процесса по метану (C
1), в то время как наибольший интерес представляют более тяжелые углеводороды (C
2+). По-видимому, взаимодействие активного компонента с тонкой подложкой и субстратом затрудняет использование каталитических композиций, используемых в таких высокоселективных процессах, как процесс Фишера-Тропша; 3) способ приготовления каталитической трубки, описанный в прототипе, обязательно включает стадию нанесения губчатого металла, которая увеличивает металлоемкость и усложняет процесс изготовления каталитического элемента. Изобретение решает задачу создания эффективного катализатора для процесса Фишера-Тропша.
Задача решается: а) за счет использования в качестве соединения предшественника порошкообразных веществ, состоящих из нелетучих, малорастворимых или нерастворимых соединений; при этом каталитический слой представляет собой толстослойное, высокопористое, самозакрепляющееся покрытие толщиной 0,6-10,0 мм, которое наносится на одну из сторон непористой металлической трубки; б) за счет размещения порошка в формовочном устройстве вместе с трубкой, обработкой формовочного устройства в окислительной и/или влажной среде, извлечением полученного изделия из формовочного устройства, его сушкой и прокаливанием.
При этом концентрация элементов в каталитическом компоненте на единицу геометрической поверхности субстрата достигает следующих величин (г/см
2): 0,03 < Al

3,80; 0 < M

2,52; 0 < Me

0,125; 0 < Э
1 
0,25; 0 < Э
2 
0,95; 0 < Э
4 
1,20, где M - переходной металл, Me - платиновый металл, Э
1 - щелочной элемент, Э
2 - щелочноземельный элемент, Э
4 - элемент VIa группы Периодической таблицы соответственно. Кроме того, в состав каталитического компонента входят кислород и вода, концентрации которых могут в зависимости от условий синтеза и активации варьироваться в широких пределах.
Важно подчеркнуть, что использование каталитического элемента в виде толстослойного покрытия на металлической трубке позволяет наносить каталитический компонент не только внутри, но и снаружи трубки. В последнем случае теплоотвод может осуществляться за счет пропускания жидкости внутри трубки, а у реактора исчезает проблема локального закупоривания трубок в местах зауглероживания и вывода из рабочей зоны больших количеств катализатора.
В качестве металлических трубок в предлагаемом изобретении могут быть использованы трубки из нержавстали, меди, алюминия и других металлов. Каталитический компонент может быть нанесен на внешнюю или внутреннюю поверхность трубки, что позволяет варьировать конструкцию реактора, поскольку меняется пространство, где протекает каталитическая реакция и где осуществляется теплоотвод. Все входящие в состав каталитического компонента химические элементы могут быть распределены равномерно или неравномерно по слою покрытия, образовывать различные индивидуальные и смешанные соединения в различных сочетаниях друг с другом. Каталитический компонент может быть однофазного или многофазного состава. Оксидные или металлоксидные соединения, входящие в состав каталитического компонента, могут включать гранецентрированные, объемноцентрированные и другие структуры металлов или их сплавов структуры шпинели, поваренной соли, корунда, рутила, пирохлора и другие, а также твердые растворы на основе указанных оксидов. В зависимости от состава и методов приготовления объем пор и их распределение по размерам могут изменяться в широких пределах. Вода в каталитическом компоненте может находиться в адсорбированном виде либо входить в состав кристаллогидратов.
Под термином "толстослойное" подразумеваются покрытия толщиной более 0,6 мм. Под термином "самозакрепляющееся" подразумеваются покрытия, способные существовать в виде механически прочных композитов (гранул, колец и т.п.) без металлической основы. Поэтому каталитические элементы с самозакрепляющимися покрытиями не требуют в качестве дополнительной детали конструкции типа губчатого металла.
Под термином "переходные элементы" подразумеваются 3d элементы 4 периода Периодической таблицы. Под термином "платиновые металлы" подразумеваются переходные металлы 5 и 6 периодов семейства платины Периодической таблицы. Под "щелочными и щелочноземельными элементами" подразумеваются элементы Ia и IIa групп Периодической таблицы соответственно.
Приготовление каталитической трубки (каталитического элемента) с каталитическим слоем для процесса Фишера-Тропша включает следующие стадии: а) приготовление шихты путем смешения порошкообразного алюминия с другими порошкообразными, нелетучими, металлическими, оксидными или другими компонентами; б) размещение шихты и металлической трубки в формовочном устройстве; в) обработку формовочного устройства водяным паром с образованием толстослойного, самозакрепленного покрытия на поверхности непористой основы; г) извлечение полученного изделия из формовочного устройства, его сушка и прокаливание с образованием высокопористого покрытия; д) в ряде случаев часть компонентов высокопористого слоя может быть введена методом пропитки полученного изделия с последующей сушкой и прокаливанием.
При этом получают катализатор, отличающийся высокой активностью и селективностью. Улучшается теплообмен катализатора с окружающей средой, упрощается конструкция каталитического элемента и уменьшается его металлоемкость.
Изобретение иллюстрируется следующими примерами.
Пример 1. Смесь порошкообразного алюминия и оксида железа загружают в формовочное устройство вместе с алюминиевой трубкой, обрабатывают паром, извлекают полученное изделие из формовочного устройства, сушат и прокаливают. Полученная каталитическая трубка имеет каталитическим слой состава Al
xFe
aO
y nH
2O толщиной 10 мм на внешней поверхности алюминиевой трубки диаметром 10 мм при следующих концентрациях химических элементов на единицу поверхности трубки (г/см
2): Al - 3,80; Fe - 0,18; концентрация кислорода определяется степенью окисления алюминия и железа; концентрация воды произвольна.
Пример 2. Способ приготовления аналогично п.1, отличающийся тем, что используют трубку из нержавстали, а полученное изделие пропитывают раствором соединений кобальта. Полученная каталитическая трубка имеет каталитический слой состава Al
xFe
aCo
a-
O
y nH
2O толщиной 10 мм на внешней поверхности трубки из нержавстали диаметром 6 мм при следующих концентрациях химических элементов на единицу поверхности трубки (г/см
2): Al - 0,89; Fe - 2,30; Co - 0,22; концентрация кислорода определяется степенью окисления алюминия, железа и кобальта, величинами а и

; концентрация воды произвольна.
Пример 3. Способ приготовления аналогично п.2, отличающийся тем, что полученное изделие пропитывают растворами соединений рутения, а термообработку формовочного устройства ведут на воздухе. Полученная каталитическая трубка имеет каталитический слой состава Al
xRu
eO
y nH
2O толщиной 10 мм на внутренней поверхности трубки из нержавстали диаметром 30 мм при следующих концентрациях химических элементов на единицу поверхности трубки (г/см
2): Al - 1,62; Ru - 0,125; концентрация кислорода определяется степенью окисления алюминия, концентрация воды произвольна.
Пример 4. Способ приготовления аналогично п.3, отличающийся тем, что полученная каталитическая трубка имеет каталитический слой состава Al
xRu
eRh
e-aO
y nH
2O толщиной 0,5 мм на внутренней поверхности трубки из нержавстали диаметром 10 мм при следующих концентрациях химических элементов на единицу поверхности трубки (г/см
2): Al - 0,03; Ru - 0,005; Rh - 0,005; концентрация кислорода определяется степенью окисления алюминия, концентрация воды произвольна.
Пример 5. Способ приготовления аналогично п.3, отличающийся тем, что полученная каталитическая трубка имеет каталитический слой состава Al
xFe
aRu
eO
y nH
2O толщиной 2 мм на внешней поверхности трубки из нержавстали диаметром 10 мм при следующих концентрациях химических элементов на единицу поверхности трубки (г/см
2): Al - 0,28; Fe - 0,18; Ru - 0,008; концентрация кислорода определяется степенью окисления алюминия и железа, величинами x и а; концентрация воды произвольна.
Пример 6. Способ приготовления аналогично п.2, отличающийся тем, что полученное изделие пропитывают раствором соединений калия. Полученная каталитическая трубка имеет каталитический слой состава Al
xFe
aK
bO
y nH
2O толщиной 10 мм на внешней поверхности трубки из нержавстали диаметром 6 мм при следующих концентрациях химических элементов на единицу поверхности трубки (г/см
2): Al - 0,52; Fe - 0,98; K - 0,25; концентрация кислорода определяется степенью окисления алюминия и железа, величинами x, а, b; концентрация воды произвольна.
Пример 7. Способ приготовления аналогично п.2, отличающийся тем, что полученная каталитическая трубка имеет каталитический слой состава Al
xFe
aMg
cO
y nH
2O толщиной 10 мм на внешней поверхности трубки из нержавстали диаметром 2 мм при следующих концентрациях химических элементов на единицу поверхности трубки (г/см
2): Al - 0,46; Fe - 0,22; Mg - 0,95; концентрация кислорода определяется степенью окисления алюминия и железа, величинами х, а, с; концентрация воды произвольна.
Пример 8 Способ приготовления аналогично п.2, отличающийся тем, что полученная каталитическая трубка имеет каталитический слой состава Al
xFe
aZr
dO
y nH
2O толщиной 10 мм на внешней поверхности трубки из нержавстали диаметром 10 мм при следующих концентрациях химических элементов на единицу поверхности трубки (г/см
2): Al - 0,48; Fe - 0,32; Zr - 1,20; концентрация кислорода определяется степенью окисления алюминия и железа, величинами x, a, d; концентрация воды произвольна.
Пример 9. Способ приготовления аналогично п.2, отличающийся тем, что полученное изделие пропитывают раствором соединений калия и лития. Полученная каталитическая трубка имеет каталитический слой состава Al
xFe
aK
bLi
b-
Mg
cO
y nH
2O толщиной 2 мм на внешней поверхности трубки из нержавстали диаметром 6 мм при следующих концентрациях химических элементов на единицу поверхности трубки (г/см
2): Al - 0,23; Fe - 0,28; K - 0,01; Li - 0,01; Mg - 0,05; концентрация кислорода определяется степенью окисления алюминия и железа, величинами а, b, с,

; концентрация воды произвольна.
Пример 10. Способ приготовления аналогично п.2, отличающийся тем, что полученная каталитическая трубка имеет каталитический слой состава Al
xFe
aCo
a-
Mg
cCa
c-
Zr
dTi
d-
O
y nH
2O толщиной 2 мм на внешней поверхности трубки из нержавстали диаметром 10 мм при следующих концентрациях химических элементов на единицу поверхности трубки (г/см
2): Al - 0,29; Fe - 0,12; Co - 0,12; Mg - 0,02; Ca - 0,02; Zr - 0,10; Ti - 0,05; концентрация кислорода определяется степенью окисления алюминия, железа и кобальта, величинами х, а, с, d,

,

,

; концентрация воды произвольна.
Пример 11. Способ приготовления аналогично п.2, отличающийся тем, что полученное изделие пропитывают раствором соединении калия и рутения. Полученная каталитическая трубка имеет каталитический слой состава Al
xFe
aK
bRu
eO
y nH
2O толщиной 2 мм на внутренней поверхности трубки из нержавстали диаметром 10 мм при следующих концентрациях химических элементов на единицу поверхности трубки (г/см
2): Al - 0,22; Fe - 0,26; K - 0,02; Ru - 0,012; концентрация кислорода определяется степенью окисления алюминия и железа, величинами а, b, e; концентрация воды произвольна.
Пример 12. Способ приготовления аналогично п.11, отличающийся тем, что полученная каталитическая трубка имеет каталитический слой состава Al
xFe
aCo
a-
K
bMg
cTi
dRu
eO
y nH
2O толщиной 2 мм на внешней поверхности, трубки из нержавстали диаметром 6 мм при следующих концентрациях химических элементов на единицу поверхности трубки (г/см
2): Al - 0,25; Fe - 0,08; Со - 0,08; K - 0,01; Mg - 0,02; Ti - 0,08; Ru - 0,004; концентрация кислорода определяется степенью окисления алюминия, железа и кобальта; величинами а, b, с, d, e,

; концентрация воды произвольна.
Все примеры с данными по составу и толщине каталитического компонента приведены в табл. 1. Анализ на содержание катионов в каталитическом покрытии проводили методами атомно-абсорбционной спектрофотометрии и пламенной фотометрии и округляли до 0,01 г/см
2; концентрацию платиновых металлов округляли до 0,001 г/см
2. Активность в реакции Фишера-Тропша определяли для смеси, содержащей (об. %): CO
2 - 1-5; CO - 25-38; H
2 - 55-70; азот - остальное, варьировали также давление, температуру и объемную скорость. Детально условия эксперимента и данные по активности и селективности образцов каталитического компонента, отделенного от непористого субстрата, приведены в табл.2.
Как видно из табл.2, каталитический компонент в виде толстослойного покрытия различного состава обладает достаточно высокой производительностью по продуктам C
2. Особенно выделяется по активности Fe-Zr система (пример 8), для которой характерна и высокая селективность по углеводородам C
6-C
20. В пересчете на единицу объема производительность такого каталитического компонента не уступает промышленным катализаторам и составляет 200 кг/м
3. Производительность единицы объема реактора, заполненного каталитическими элементами в виде трубок диаметром 6 мм с нанесенным на внешнюю поверхность каталитическим компонентом аналогично примеру 8, но толщиной 2 мм, должна составлять около 100 кг продукта на 1 м
3, что является достаточно высокой величиной для такого типа процессов.
Формула изобретения
1. Способ приготовления катализатора для процесса Фишера-Тропша с нанесенным на одну из сторон каталитическим слоем, включающий использование в качестве соединений-предшественников растворы солей, которые наносятся на стенку трубки и образуют при прокаливании невосстанавливающиеся и восстанавливающиеся в водороде оксиды, отличающийся тем, что в качестве соединений-предшественников используют порошкообразные вещества, состоящие из нелетучих, нерастворимых или малорастворимых соединений переходных металлов или их смесей и/или циркония и/или щелочноземельных элементов или их смесей и алюминия или различные сочетания всех индивидуальных и смешанных соединений вышеперечисленных элементов и алюминия, а процесс приготовления каталитического слоя включает смешение порошков, их размещение в формовочном устройстве, проницаемом для газообразных веществ, вместе с металлической трубкой, обработку в окислительной и/или влажной атмосфере формовочного устройства вместе с порошкообразными компонентами и металлической трубкой с последующим извлечением полученного изделия в виде трубки с каталитическим слоем, его сушкой и прокаливанием, при этом каталитический слой представляет собой высокопористое, толстослойное, самозакрепляющееся покрытие толщиной 0,6 - 10,0 мм, нанесенное на внешнюю или внутреннюю поверхность трубки.
2. Способ приготовления по п.1, отличающийся тем, что в каталитический слой дополнительно вводят растворимые компоненты на основе щелочных и/или платиновых металлов методом пропитки.
3. Способ приготовления по п.1, отличающийся тем, что концентрация алюминия в каталитическом слое на единицу геометрической поверхности трубки составляет, г/см
2: 0,03 < Al

3,80.
4. Способ приготовления по п.1, отличающийся тем, что концентрация переходных элементов (М) в каталитическом слое на единицу геометрической поверхности трубки составляет, г/см
2: 0 < М

2,52.
5. Способ приготовления по п. 1, отличающийся тем, что концентрация платиновых металлов (Me) в каталитическом слое на единицу геометрической поверхности трубки составляет, г/см
2: 0 < Мe

0,125.
6. Способ приготовления по п.1, отличающийся тем, что концентрация щелочных (Iа) элементов Периодической таблицы (Э
1) в каталитическом слое на единицу геометрической поверхности трубки составляет, г/см
2: 0 < Э
1 
0,25.
7. Способ приготовления по п.1, отличающийся тем, что концентрация щелочноземельных (IIа) элементов Периодической таблицы (Э
2) в каталитическом слое на единицу геометрической поверхности трубки составляет, г/см
2: 0 < Э
2 
0,95.
8. Способ приготовления по п.1, отличающийся тем, что концентрация IVа элементов Периодической таблицы (Э
4) на единицу геометрической поверхности трубки составляет, г/см
2: 0 < Э
4 
1,20.
РИСУНКИ
Рисунок 1,
Рисунок 2