Изобретение относится к генетике и селекции и может быть использовано для получения мутантов как исходного материала в селекции ячменя. Техническим результатом изобретения является повышение выхода и расширение спектра селекционно-ценных морфологических и физиологических мутаций у растений ячменя во втором поколении после воздействия электромагнитным излучением. На семена ячменя воздействуют красным светом с длиной волны 633
10 нм, полученным от электрической лампы накаливания через интерференционный светофильтр, плотность мощности излучения - 0,1 мВт/см2. Продолжительность обработки 60 мин. 7 табл.
Предлагаемое изобретение относится к области генетики и селекции и может быть использовано для получения мутантов как исходного материала в селекции ячменя.
Известны способы индукции наследственных изменений у сельскохозяйственных растений с помощью рентгеновских [1], гамма-лучей [2, 3], химических мутагенов (например, нитрозоэтилмочевины [4]). Под влиянием названных мутагенов часто отмечается появление полустерильных, малоурожайных, позднеспелых мутаций.
Наиболее близким к предлагаемому изобретению является способ мутагенного воздействия на семена ячменя с применением гамма-излучения с однократными дозами обработки 100 и 150 Гр [5].
Однако при существующем режиме воздействия гамма-лучи значительно снижают всхожесть семян (см. Табл.1) Растения ячменя, выросшие из обработанных гамма-излучением зерновок, развиваются более медленно, образуют меньше продуктивных побегов, имеют более короткий стебель, у них наблюдается низкая завязываемость семян.
Спектр морфологических и физиологических мутаций, вызванных действием гамма-лучей, бывает представлен преимущественно позднеспелыми формами и изменениями, выражающимися рыхлым колосом и его хаотической стерильностью.
Предлагаемый способ предусматривает обработку семян ячменя красным светом, полученным от электрической лампы накаливания через интерференционный светофильтр. Длина волны излучения составляет 633

10 нм, плотность мощности - 0,1 мВт/см, продолжительность воздействия - 60 минут.
Красный свет (КС) служит регулятором многих процессов жизнедеятельности растений. Среди них можно отметить фототропизм [6], накопление хлорофилла, поглощение углекислоты листьями [7], фотоморфогенез [8] и др. Реакции растений на КС осуществляются через фитохромную систему [9], а также при участии хлорофилла [7].
Под действием КС в растениях изменяется проницаемость биомембран; происходит перераспределение между клеткой и окружающей средой воды, ионов водорода, калия, кальция; усиливается образование нуклеиновых кислот; меняются pH среды и активность ферментов. Отмечено вызванное красным светом повышение содержания фитогормонов, таких как ауксины (например, индолилуксусная кислота), гиббереллины (в частности, гибберелловая кислота), цитокинины (кинетин) [9, 10, 11], абсцизовая кислота [12].
С перечисленными реакциями может быть связано и мутагенное действие КС, так как в числе ферментных отклонений возможны нарушения функционирования систем репликации и репарации ДНК, работа которых тесно связана с процессом возникновения мутаций [13] , а фитогормоны при определенных концентрациях проявляют выраженный мутагенный эффект [4, 14, 15, 16].
Способ иллюстрируется следующими примерами.
Воздушно-сухие семена ячменя сорта Дина перед посевом обрабатывали красным светом в течение 60 минут. Контролем служили необработанные семена.
В каждом варианте облучали и высевали 500 зерен (по 125 штук на делянку площадью 1,0 м
2).
Красный свет не оказал существенного влияния на полевую всхожесть семян (см.Табл.2).
Не обнаружено достоверного изменения выживаемости растений, выросших из обработанных красным светом семян.
Динамика развития растений ячменя в M
1 после облучения КС не изменялась.
Воздействие на семена красным светом повлияло на формирование соцветия ячменя: существенно снизилось число колосков в колосе (табл.3).
Уменьшение количества колосков не повлекло за собой снижения массы зерна с колоса.
Во втором поколении с начала фазы всходов выделяли хлорофилльные мутации ячменя, определяли их тип и подсчитывали количество. Хлорофилльные нарушения обнаружены в варианте обработки семян красным светом (табл.4).
Разнообразие хлорофилльных аномалий представлено двумя типами: xantha - растения с желтой окраской, погибающие в период всходов из-за отсутствия хлорофилла; viridoalbotermialis - растения, образующие первые 2...3 листа нормальной зеленой окраски, а следующие - белые, без хлорофилла.
Частота хлорофилльных мутаций в опытном варианте составила 0,96%.
В контроле хлорофилльные нарушения ячменя не наблюдались.
В M
2 выделены и другие типы изменений, вызванных действием КС. Среди них семьи с сильной кустистостью, высокостебельные, с ранним и поздним колошением, длинным колосом, повышенным числом колосков в колосе, высокой массой зерна с колоса, антоциановой пигментацией отдельных частей растения (табл.5).
Как видно из таблицы 5, красный свет индуцировал 9 типов морфологических и физиологических изменений ячменя.
В контрольном варианте отклонения от исходного сорта не возникали.
Ряд выделенных в M
2 мутантов характеризуется не одним, а группой измененных признаков. Например, сочетание в одной семье удлиненного периода вегетации и высокой массы зерна с колоса, или семья с изменениями количественных признаков, в которой наблюдалась и хлорофилльная аномалия. Такое явление может быть связано с плейотропным действием мутантного гена или одновременным мутированием нескольких генов.
Большинство отобранных мутантов ячменя представляет ценность как исходный материал для селекции (табл.6).
Мутант 3-1 по сравнению с исходным сортом Дина образует в 2,4 раза больше продуктивных побегов, имеет стебель на 10,2 см длиннее, число колосков в колосе у него выше на 15%. Часть растений данной семьи проявили фенотипически хлорофилльную мутацию xantha.
Мутант 3-5 вступает в фазу колошения и созревает на 4 дня раньше.
Мутант 3-6 также отличается ускоренным развитием. Высота растений на 13,3 см больше исходной формы.
Мутант 3-7 развивается медленнее сорта Дина. Отличается высокой продуктивностью зерна.
Мутант 3-8 характеризуется антоциановой пигментацией ушек, междоузлий, боковых колосков, нервов цветковых чешуй и оснований остей. Колос длинный, образует больше колосков, масса зерна с него на 36,4% выше. Созревает на 8 дней позднее.
Мутант 3-9 имеет ушки, окрашенные антоцианом. Стебель выше, чем у исходного сорта на 16,4 см. Продуктивность зерна высокая. Длина колоса 8,6 см. Продолжительность вегетационного периода на 7 дней больше.
Все описанные мутанты относятся к разновидности нутанс.
Частота морфологических и физиологических мутаций ячменя, полученных во втором поколении, приведена в таблице 7.
Обработка семян ячменя красным светом в течение 60 минут индуцировала образование 8 мутантных семей, что составило 1,92% от числа проанализированных. Критерий достоверности (t
d) свидетельствует о существенности разницы между опытным вариантом и контролем на 99%-ном уровне вероятности.
Таким образом, предлагаемый для обработки семян физический фактор красный свет в сравнении с прототипом является новым мутагенным фактором для семян и растений ячменя, обеспечивающим во втором поколении больший выход и более широкий спектр селекционно-ценных наследственных изменений при отсутствии стерильных форм растений.
Литература 1. Chaundhuri K.L. High yielding X-ray mutation of jute (Carchorus ditotius Linn. )// Annu. rep. simitted to the Indian Cent. Jute Cummittee. 1948. P. 18...21.
2. Gustafsson A. Productive mutations induced in barley by ionizing radiations and chemical mutagens // Hereditas. 1963. Vol. 50. P. 211...263.
3. Шкварников Т.К. Использование радиации в селекции растений (современное состояние и перспективы) //Радиация и селекция растений. М.: Атомиздат, 1965. С.17...38.
4. Козаченко М.Р., Манзюк В.Т. Получение мутантов ярового ячменя при сочетании красного лазерного излучения с химическими мутагенами или проникающей радиацией // Применение низкоэнергетических физических факторов в биологии и сельском хозяйстве/Тез. Всесоюз.науч.конф. Киров,1989.С.77...78.
5. Пуртова И.В. Создание исходного материала ярового ячменя с использованием физических мутагенных факторов, парааминобензойной и абсцизовой кислот /Автореф. дисс. на соиск.уч.степ.канд.с.-х. наук. СПб, 1993. 20 с. - прототип.
6. Nebel B.J. Action spectra for photogrowth and phototropism in protonemata of the moss Physcomitrium turbinatum // Planta. 1968. 81. N 2. P. 287. ..302.
7. Бухов Н.Г. Спектральный состав света как фактор изменения физиологического состояния и продуктивности растений // Сельскохозяйственная биология. 1993. N 1. С.9...18.
8. Mancinelli A.L. Interaction between cryptochrome and phytochrome in higher plant photomorphogenesis // Amer. J. Bot. 1989. 78. N 1. P. 143... 154.
9. Кузнецов Е.Д., Сечняк Л.К., Киндрук Н.А. и др. Роль фитохрома в растениях. М.: Агропромиздат, 1986, 288 с.
10. Qamaruddin M. Appearance of the zeatin riboside type of cytokinin in Pinus sylvestris seeds after red light treatment // Scand. J. Forest Res. 1991. 6. N 1. P. 41...46.
11. Kopcewicz J., Madela K. Phytochrome-controlled level of growth substances in etiolated oat seedlings // Acta. soc. bot. pol. 1993. 61. N 3... 4. P. 381...388.
12. Leopold A.C., LaFavre A.K. Interactions between red light, abscisic acid, and calcium in gravitropism // Plant Physiol. 1989. 89. N 3. P. 875... 878.
13. Питиримова M.A. Постмутагенное восстановление и мутационная изменчивость ячменя// Применение низкоэнергетических физических факторов в биологии и сельском хозяйстве / Тез.Bсeсоюз. науч.конф. Киров,1989. С.32...33.
14. Дудин Г. П. Изменчивость ячменя под влиянием лазерного излучения и бензиладенина // Сельскохозяйственная радиобиология/ Кишиневск.с.-х. ин-т. Кишинев, 1990. С.23...28.
15. Виленский Е. Р. Фитогормоны и генетический гомеостаз // 2 Съезд Всесоюз. об-ва физиологов растений) Минск, 24...29 сект. 1990 / Тез.докл. 4.2.М.,1992. С.40.
16. Дудин Г. П. Мутанты ячменя, индуцированные ПАБК // Почва, биология растений и агротехника их возделывания /Тезисы докладов научной конференции. Киров, 1997. С.11...12.
Формула изобретения
Способ мутагенного воздействия на семеня ячменя, включающий обработку семян электромагнитным излучением с плотностью мощности 0,1 мВт/см
2 на протяжении 60 мин, отличающийся тем, что семена обрабатывают красным светом с длиной волны 633

10 нм.
РИСУНКИ
Рисунок 1,
Рисунок 2,
Рисунок 3,
Рисунок 4,
Рисунок 5,
Рисунок 6,
Рисунок 7,
Рисунок 8