Футеровка стенки печи и способ ее изготовления
Изобретение относится к области металлургии, конкретно к футеровке стенок плавильных печей. Сущность изобретения: футеровка стенки печи включает огнеупорный слой, имеющий горячую лицевую или огневую поверхность, открытую во внутреннюю полость печи, множество элементов из высокотеплопроводного материала, такого как медные стержни или проволоки, проходящих от наружного кожуха печи в огнеупорную футеровку. Элементы обеспечивают непрерывный путь отвода тепла к наружному кожуху печи и рассредоточены в огнеупорной футеровке для обеспечения достижения, по существу, однородной температуры по огневой поверхности печи в окрестности элементов. Футеровка стенки может быть выполнена путем закрепления ряда элементов к внутренней стенке наружного кожуха и нанесения огнеупорного материала на внутреннюю стенку. Использование изобретения увеличивает срок службы футеровки за счет исключения температурного градиента на ее горячей лицевой поверхности. 2 с. и 17 з.п.ф-лы, 6 ил.
Настоящее изобретение относится к огнеупорной футеровке стенок, используемой в печах. В частности, настоящее изобретение относится к охлаждающим устройствам для огнеупорной футеровки стенок.
Печи, работающие при высоких температурах, используются во многих различных процессах, включая плавление металлов. Большинство печей сконструировано таким образом, что имеют наружный кожух, изготовленный из металлического материала, обычно из стали. Наружный кожух футерован слоем огнеупорных кирпичей для изоляции наружного кожуха от экстремальных температур в полости печи, а также для предотвращения контактирования очень горячих материалов, находящихся в печи, с наружным кожухом. Огнеупорная футеровка должна иметь большой срок службы для того, чтобы свести к минимуму время, связанное с перефутеровкой печи. Огнеупорные футеровки обычно изготавливают из материалов, которые фактически не реагируют с содержимым печи. Однако эрозия и разрушение огнеупорных футеровок все же имеют место, и установлено, что скорость эрозии и разрушения футеровок возрастает при увеличении температуры горячей лицевой поверхности футеровки (т.е. лицевой поверхности футеровки, обращенной во внутреннюю полость печи). Поэтому было осуществлено множество попыток снизить температуру горячей лицевой поверхности футеровки для того, чтобы увеличить срок службы огнеупорной футеровки. Одна из конструкций, предложенных для использования с тем, чтобы снизить температуру горячей лицевой поверхности включает установку водоохлаждаемого контура в огнеупорной футеровке. Когда вода течет через охлаждающий контур, она отбирает тепло от огнеупорной футеровки и снижает температуру горячей лицевой поверхности футеровки. Хотя такие установки действуют с удовлетворительным понижением температуры футеровки, они включают применение водоохлаждаемых контуров внутри футеровки. Любая протечка воды из охлаждающего контура имеет потенциальную возможность просочиться в печь и вызвать взрывы и гидратацию огнеупора. Совершенно очевидно, что такая ситуация является чрезвычайно опасной, и в настоящее время считают, что такого внутреннего водоохлаждения огнеупорных футеровок следует избегать. Другой подход, который был использован в промышленности, включает помещение массивных монолитных охлаждающих элементов с высокой теплопроводностью сквозь стенку печи и футеровку. Наружная часть массивных охлаждающих элементов остается снаружи огнеупорной футеровки. Участки охлаждающих элементов, расположенные снаружи печи, охлаждаются водоохлаждаемым контуров. Соответственно, если происходит протечка в водоохлаждаемом контуре, вода не может войти в соприкосновение с горячим содержимым печи, что исключает гидратацию и снижает опасность взрыва. Массивные монолитные охлаждающие элементы обычно расположены с интервалом примерно в полметра друг от друга. Это приводит к возникновению больших температурных градиентов в огнеупорной футеровке. Зоны высокой температуры в футеровке изнашиваются намного быстрее, чем зона с относительно более низкой температурой, и износ футеровки является очень неравномерным. Кроме того, большие температурные градиенты в футеровке задают большие температурные напряжения в огнеупорной футеровке. В патенте Великобритании N 1,585,155 описана дуговая печь, в которой предусмотрена составная футеровки, которая включает открытый внутренний слой огнеупорного материала, обращенный во внутреннюю полость печи. Наружный слой огнеупорного материала закладывается на внутреннем слое, подпирая его, и этот наружный слой огнеупорного материала находится в тепловом контакте с внутренним слоем. Наружный слой выполнен из материала, имеющего более высокую теплопроводность, чем материал внутреннего слоя. Наружный слой может контактировать с кожухом почти, который рассеивает тепло в окружающую среду или, что обычнее, в среду с принудительным воздушным или водяным охлаждением. Составная конструкция огнеупорной футеровки обеспечивает увеличение теплового потока через боковую стенку футеровки, посредством чего снижает степень износа огнеупора. Эта конструкция обладает недостатком, требующим установки конструкции составной огнеупорной стенки. Более того, хотя описанный наружный слой огнеупорной футеровки изготовлен из высокотеплопроводного огнеупорного материала, теплопроводность такого огнеупорного материала все же относительно низкая, и это ограничивает количество тепла, которое может быть отведено от печи. Составные футеровки также являются дорогостоящими и могут быть реактивными. Еще одно решение проблемы эрозии и проницаемости огнеупорных футеровок при высокой температуре в печи описано в патенте США N 3,849,587 на имя Hatch Associates Limited. В этом патенте описаны защитные огнеупорные футеровки печей, работающих при высоких температурах, включающие пропущенные сквозь стенку и обратно в футеровку массивные охлаждающие элементы. Наружные участки массивных охлаждающих элементов остаются снаружи огнеупорной футеровки. Охлаждающие элементы, встроенные в футеровку, по существу, лишены водоохлаждаемых каналов в участках, расположенных в футеровке печи, что исключает протечки воды в печь. Участки водоохлаждаемых элементов, расположенные снаружи печи, обычно охлаждаются водоохлаждаемым контуром. Длина, поперечное сечение, интервалы и материал охлаждающих элементов выбираются таким образом, чтобы исключить расплавление охлаждающих элементов и отвести достаточно тепла от футеровки для ограничения эрозии футеровки. Охлаждающие элементы, введенные в футеровку, обычно изготовлены из меди охлаждающие элементы, описанные в этом патенте, имеют большой диаметр, обычно, около 4 дюймов (100 мм) в диаметре, и расположены на относительно большом расстоянии друг от друга. Это приводит к возникновению температурного градиента по горячей лицевой поверхности огнеупорной футеровки и сопутствующим неравномерному износу и термическим напряжениям, связанным с таким температурным градиентом. Настоящее изобретение предусматривает огнеупорную футеровку, которая преодолевает или по крайней мере смягчает один или более недостатков вышеупомянутых решений уровня техники. В первом аспекте настоящего изобретения предусмотрена футеровка стенки печи, имеющей наружный кожух и источник внешнего охладителя с привязкой к кожуху, упомянутая футеровка стенки содержит огнеупорную футеровку, примыкающую к наружному кожуху, при этом лицевая горячая поверхность футеровки открыта и подвергается воздействию высокой температуры в процессе работы печи, упомянутая огнеупорная футеровка включает множество элементов из высокотеплопроводного материала, элементы проходят в огнеупорную футеровку в направлении к горячей лицевой поверхности, каждый элемент обеспечивает непрерывный путь теплоотвода от конца элемента, расположенного ближе к горячей лицевой поверхности, к наружному кожуху печи, множество элементов разбросаны с интервалом в огнеупорной футеровке для обеспечения, по существу, однородной температуры по всей горячей лицевой или огневой поверхности печи в окрестности элементов в процессе работы печи. Под термином "по существу, однородной температуры" понимают, что температура по горячей лицевой или огневой поверхности не отличается более чем на 100oC. Предпочтительнее, температура по всей горячей лицевой или огневой поверхности не отличается более чем на 50oC. Для обеспечения необходимой однородной температуры по всей горячей лицевой поверхности, по существу, по всей футеровке стенки может быть расположено множество элементов. Альтернативно, в футеровке стенки множество элементов может располагаться таким образом, что они больше сконцентрированы в более горячих точках печи. Аналогично, в более холодных участках печи может быть расположено меньшее количество элементов, возможно также, что элементы могут не проходить ко всем частям печи. Это, в частности, происходит в тех случаях, когда конструкция печи и ее работа, в отсутствие множества элементов ведущая к явно выраженным горячим и холодным точкам печи, учитывает, что дополнительный отвод тепла, обеспечиваемый множеством элементов, может не потребоваться в более холодных зонах печи. Футеровка печи настоящего изобретения может быть использована для гарантирования того, что, по горячей лицевой или огневой поверхности печи в окрестности элементов обеспечивается, по существу, однородная температура. Альтернативно, футеровка может быть сконструирована для обеспечения того, что, по существу, однородная температура достигается по всей горячей лицевой или огневой поверхности печи. Это является предпочтительным, когда необходимо предотвратить возникновение нежелательных градиентов температуры на горячей лицевой или огневой поверхности футеровки. В любом случае, по существу, однородная температура может быть ниже температуры, при которой скорость разрушения и/или эрозия огнеупорной футеровки становится неприемлемо высокой. Должно быть понятно, что в печах, в которых в отсутствие множества элементов имеется тенденция к явно выраженный горячим и холодным точкам, элементы могут требоваться только в или вблизи более горячих точек. Предпочтительнее, высокотеплопроводным материалом является металл или металлический сплав. Особенно предпочтительной является медь. В предпочтительном варианте настоящего изобретения множество элементов из высокотеплопроводного материала проходят в огнеупорную футеровку в направлении горячей лицевой или огневой поверхности футеровки, но не на столько, чтобы достигнуть огневой поверхности футеровки. Вследствие этого концы элементов отделены от огневой поверхности огнеупорным слоем, который снижает тепловой поток через стенку и изолирует элементы от очень высоких температур, возникающих на огневой поверхности футеровки в процессе работы печи. Это защищает элементы и снижает возможность разрушения из-за термического повреждения элементов. Множество элементов из высокотеплопроводного материала проходят от внутренней стенки наружного кожуха печи в огнеупорную футеровку для обеспечения пути непрерывного отвода тепла от концов элементов, находящихся ближе к огневой поверхности футеровки, к наружному кожуху. Тепло направляется вдоль элементов к наружному кожуху. С наружным кожухом может быть связан внешний охлаждающий контур для отвода тепла от стенки печи. Таким образом, множество элементов способствуют отводу тепла от печи и обеспечивают возможность поддержания огневой поверхности огнеупорной футеровки при температуре, обеспечивающей более продолжительный срок службы огнеупорной футеровки. Множество элементов распределены по огнеупорной футеровки таким образом, что огневая поверхность имеет, по существу, однородную температуру в окрестности этих элементов. Это исключает возникновение горячих зон в печи, снижает возникновение термических напряжений в огнеупорном слое и создает стабильные условия на огневой поверхности. С этой точки зрения следует отметить, что печь, описанная в патенте США N 3,849,587, которая использует относительно крупные охлаждающие тела, размещенные с большим с большим зазором в футеровке, неспособна обеспечить такие желательные условия. Элементы из высокотеплопроводного материала могут быть выполнены в виде металлической проволоки или металлических стержней, при этом медь является предпочтительно выбранным металлом. Диаметр проволоки или стержней может находиться в диапазоне от долей миллиметра до 25 мм. Большие диаметры не рекомендуются, поскольку возникают трудности в достижении необходимого теплоотвода от печи при сохранении в то же время, по существу, однородной температуры на огневой поверхности огнеупорной футеровки. Альтернативно, элементы могут быть выполнены в виде огнеупорных кирпичей, пропитанных расплавом металла, с последующим обеспечением затвердевания расплава металла. При пропитывании огнеупорных кирпичей расплавом металла, последний проходит в кирпич по порам огнеупорного кирпича. После затвердевания расплава металла образуются сплошные твердые металлические тела, проходящие от одной лицевой поверхности кирпича внутрь кирпича и эти сплошные металлические тела действуют как множество элементов из высокотеплопроводного материала при использовании этих кирпичей в футеровке печи. Понятно, что лицевая поверхность кирпичей, которая подвергается пропитыванию расплавом металла, должна быть лицевой поверхностью кирпича, который примыкает к внутренней стенке наружного кожуха печи. Расплав металла также должен пропитывать только часть пути через кирпич для обеспечения того, что между металлом и огневой поверхностью печи останется огнеупорный слой. Футеровка стенки согласно настоящему изобретению обеспечивает охлаждение огнеупорной футеровки без необходимости внутреннего охлаждения футеровки. Множество элементов отводят тепло к наружному кожуху печи, и от наружного кожуха тепло может отводиться внешним охлаждающим контуром. Внешний охлаждающий контур может быть с принудительным или естественным воздушным охлаждением, или, что более предпочтительно, водоохлаждаемым контуром. Например, наружный кожух может иметь водяную рубашку, хотя также могут быть использованы любые другие водоохлаждающие устройства. Множество элементов обеспечивают непрерывный путь для отвода тепла к наружному кожуху. Они также позволяют снизить до минимума контактное сопротивление передаче тепла от огнеупорной футеровки. Может быть обеспечена более эффективная топлопередача, чем в составных футеровках, описанных в некоторых документах уровня техники, поскольку футеровка стенки согласно настоящему изобретению проявляет более высокую общую полезную теплопроводность. В одном из вариантов множество элементов может быть выполнено за одно целое с наружным кожухом. В другом варианте множество элементов может быть закреплено или присоединено к наружному кожуху. Футеровка стенки согласно настоящему изобретению может быть перемонтировка в существующих печах или может быть сконструирована как часть новых печей. В случае перефутировки существующих печей множество элементов могут быть введены в отверстия, просверленные через печь в огнеупорную футеровку, хотя это может ослабить конструкцию печи. Более предпочтительно монтировать футеровку стенки в то же время, когда осуществляют замену существующей футировки. Футеровка может быть смонтирована в то же время путем использования пропитанных металлом огнеупорных кирпичей в футеровку печи или путем использования огнеупорных кирпичей, в которые ранее установлены стержни или проволока. В другом аспекте настоящего изобретения предусмотрен способ футеровки печи посредством стеновой футеровки, содержащей огнеупорную футеровку, имеющую множество элементов с высокой теплопроводностью, проходящих от наружного кожуха футеровки в огнеупорную футеровку, включающий: (а) расчет теплового потока через футеровку стенки, необходимого для достижения желаемой температуры огневой поверхности футеровки стенки; (б) определение толщины футеровки стенки и теплопроводности футеровки стенки, необходимой для обеспечения теплового потока, рассчитанного в этапе (а); (в) определение позиций и интервалов между нами для множества упомянутых элементов в стеновой футеровке для обеспечения теплопроводности; и (г) снабжение печи стеновой футеровкой, при этом элементы находятся в тепловом контакте с наружным кожухом, причем стеновая футеровка обеспечивает достижение, по существу, однородной температуры по огневой поверхности печи в процессе работы печи. Настоящее изобретение обеспечивает возможность установки в печь огнеупорной футеровки совсем без использования огнеупорных кирпичей. В еще одном аспекте настоящего изобретения предусмотрен способ футеровки печи огнеупорной футеровкой, при этом печь содержит наружный кожух, упомянутый способ включает: закрепление ряда элементов из материала высокой теплопроводности к внутренней стенке наружного кожуха таким образом, чтобы ряд элементов находится в тепловом контакте с наружной стенкой кожуха; и приложение содержащего огнеупор материала к внутренней стенке наружного кожуха с образованием покрытия на внутренней стенке. Материал, содержащий огнеупор, может прикладываться в, по существу, сухом состоянии или в форме жидкого теста или шлама, или в виде пасты. Огнеупорсодержащий материал может включать огнеупорный материал и один или более дополнительных компонентов, вследствие чего получают композитную огнеупорную футеровку, или огнеупорсодержащий материал может содержать только чистый oгнеупорный материал. Огнеупорная футеровка может быть составной футеровкой, образованной путем последовательного наложения в любом желаемом порядке раздельных слоев огнеупоросодержащего материала и слоев неогнеупорного или слабо огнеупорного материала. Если используют жидкое тесто или пасту огнеупорсодержащего материала, может оказаться необходимым приложить огнеупор или апасту к внутренней стенке в несколько этапов, в первом из которых наносят тонкое покрытие и дают ему возможность затвердеть, и затем наносят одно или более дополнительное покрытие пасты или шлама. Такое поэтапное построение огнеупорной футеровки может быть необходимым, когда требуются толстые футеровки, и понятно, что могут возникнуть трудности с сушкой и растрескиванием толстой футеровки, если она наносится в виде единственного слоя. Законченная огнеупорная футеровка должна иметь толщину, достаточную для полного покрытия ряда элементов. Это должен обеспечить слой изолирующего огпеупорного материала между концами элементов и огневой поверхностью печи, который будет предотвращать плавление элементов в процессе работы печи. Огнеупорсодержащий материал может наноситься на внутреннюю стенку любым известным специалистам способом. Например, огнеупорсодержащий материал может наноситься путем разбрызгивания, расплыления или набрасывания мастерком. Должно быть понятно, что изобретение включает все способы нанесения огнеупорсодержащего материала на внутреннюю стенку печи. Если используют шлам или пасту, они должны быть достаточно толстыми или вязкими для того, чтобы иметь возможность оставаться на месте на внутренней стенке при затвердевании. Обычно опыты могут легко установить требуемую вязкость пасты или шлама для достижения этой цели. Ряд элементов, предпочтительнее, содержит ряд металлических элементов. В одном из вариантов ряд элементов содержит медную проволочную сетку, имеющую дополнительные медные проволоки, закрепленные в точках пересечения на сетке и проходящие, по существу, под прямыми углами к плоскости сетки. При закреплении сетки на внутренней стенке кожуха печи медные проволоки, закрепленные на сетке, проходят обычно внутрь в печь. При работе печи эти медные проволоки служат в качестве охлаждающих элементов, которые обеспечивают непрерывный путь отвода тепла от концов проволок к источнику наружного охладителя, который контактирует с наружным кожухом и охлаждающими элементами, способствуя таким образом отводу тепла от печи. В другом варианте этап закрепления ряда элементов к внутренней стенке кожуха включает выполнение ряда элементов за одно целое с внутренней стенкой наружного кожуха. Альтернативно ряд элементов может быть выполнен посредством заливки расплава металла на внутреннюю стенку наружного кожуха. Предпочтительно, чтобы ряд элементов располагался таким образом, чтобы обеспечить достижение, по существу, однородной температуры по огневой поверхности печи в окрестности элементов в процессе работы печи. Если желательно или необходима, по существу, однородная температура по всей огневой поверхности огнеупорной футеровки печи, может оказаться необходимым иметь неравномерное распределение элементов из высокотеплопроводного материала по всей футеровке стенки. Например, количество элементов, помещенных в известных горячих зонах работающей печи, может быть увеличено для отвода пропорционально большего количества тепла на квадратный метр в сравнении с более холодными участками печи. Предпочтительные варианты настоящего изобретения далее будут описаны более подробно со ссылкой на чертежи, на которых фиг. 1 изображает поперечное сечение футеровки стенки печи в соответствии с настоящим изобретением; фиг. 2 изображает график температурного профиля через футеровку стенки; фиг. 3 является видом в поперечном сечении охлаждающего элемента, сконструированного в соответствии с настоящим изобретением;фиг. 4 является схематической диаграммой питания опытной установки со встроенным охлаждающим элементом с конструкцией согласно фиг. 3;
фиг. 5 является графиком температурного профиля через охлаждающий элемент опытной установки; и
фиг. 6 является графиком изменения со временем коэффициента теплопередачи огневой (горячей лицевой) поверхности установки в процессе испытаний. Согласно фиг. 1 стенка 10 печи включает наружный кожух 12. Наружный кожух обычно изготовлен из стали. Печь содержит огнеупорную футеровку 14. Огневая или горячая лицевая поверхность 16 подвержена воздействию высоких температур, возникающих внутри печи. Футеровка стенки содержит множество медных стержней или проволок 18, находящихся в тепловом контакте с наружным кожухом 12 и проходящих в огнеупорную футеровку 14. Как видно из фиг. 1, медные стержни 18 не проходят насквозь через огнеупорную футеровку 14, а скорее находятся на некотором расстоянии от огневой поверхности 16. Это гарантирует, что между концами медных стержней 18 и огневой поверхностью 16 имеется слой огнеупорного материала и этот слой огнеупорного материала изолирует стержни от воздействия высоких температур в печи, предотвращая таким образом разрушение стержней вследствие термических повреждений. В процессе работы печи тепло передается от огневой поверхности 16 через огнеупорную футеровку 14 к медным стержням 18. Стержни находятся в тепловом контакте с наружным кожухом 12 и служат для быстрой передачи тепла кожуху. Охлаждающая вода 20, которая течет через водяную рубашку 22, последовательно отбирает тепло от кожуха. Медные стержни 18 распределены по огнеупорной футеровке для обеспечения достижения, по существу, однородного градиента температуры по огневой поверхности. Стержни, предпочтительнее, расположены таким образом, что создается, по существу, линейная теплопередача через стенку. Это охлаждает огневую поверхность очень равномерно, эффектно исключая горячие зоны стенки, явно заметные в конструкциях, известных из уровня техники, и вызывающие ненормальный износ огневой поверхности. Показано также, что линейная теплопередача является более эффективной, т.е. для отвода того же самого теплового потока требуется материал с менее высокой теплопроводностью. Задачей стеновой футеровки является снижение температуры огнеупора на огневой поверхности до определенной температуры (либо той, при которой прекращаются коррозионные реакции, либо той, при которой происходит замерзание материала процесса. Охладитель должен быть сконструирован таким образом, чтобы обеспечить получение этого результата, в то же время сводя к минимуму тепловые потери печи (тепловой поток через стенку). Тепловой поток Q(W/м2) через стенку фиг. 1 можно рассчитать по формуле

где Tf - температура печи (oC);
Tc - температура охладителя (oC);
RTOT - суммарное тепловое сопротивление секции (м2 K/W). Следовательно, для регулирования температур огнеупора и теплового потока тепловое сопротивление секции стенки должно быть изменяющимся. Общее или суммарное сопротивление секции стенки является суммой кондуктивного сопротивления каждого слоя материала и конвективного сопротивления у горячей и холодной поверхностей. Однако конвективные сопротивления являются либо неизменяющимися, либо незначительными, так что тепловой поток может регулироваться только величиной кондуктивного сопротивления действующего реального элемента. Тепловое кондуктивное сопротивление RCOND (м2 K/W) определяется как

где L - толщина слоя (M);

Формула изобретения

где Q - тепловой поток, W/м2;
Тf - температура печи, oC;
Тс - температура охладителя, используемого для охлаждения наружного кожуха, oC;
Rтот - общее суммарное тепловое сопротивление огнеупорной футеровки, м2K/W,
при этом Rтот определяют из соотношения:

где L - толщина огнеупорной футеровки, м;

19. Способ по любому из пп.17-18, отличающийся тем, что при закреплении ряда элементов присоединяют медную проволочную сетку к внутренней стенке наружного корпуса и в точках пересечения на сетке монтируют дополнительные медные проволоки, по существу, под прямыми углами к плоскости сетки.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6