Способ снижения последствий взаимодействия космического объекта с землей
Способ относится к области защиты Земли от космических объектов. Техническим результатом изобретения является повышение импульса силы, которая препятствует движению объекта к Земле. Способ заключается в том, что из ракеты на траектории движения объекта выводят жидкое вещество, которое повышает среднюю плотность среды и увеличивает сопротивление перемещению объекта. 1 ил.
Техническое решение относится к устранению катаклизмов при столкновении космического объекта различного происхождения с Землей, что имело место при столкновении с Тунгусским метеоритом, о природе которого до сих пор спорят. А сами последствия проявились в уничтожении лесного массива, причем остались только последствия воздействия высокой температуры и ураганного ветра, а само вещество метеорита распылилось. Ближайшим техническим решением можно считать уничтожение летательного аппарата ракетами с земли. Это имело место при уничтожении У-2 с Пауэрсом, использование ракет "Стингер" земля - воздух. Во всех случаях имеет место пересечение траекторий летательного аппарата с траекторией ракеты и ее взрыв при столкновении.
Недостатком такого способа можно считать малый отрезок времени воздействия на летательный аппарат (объект), который исчисляется миллионными долями секунды с учетом встречных скоростей при столкновении, а сам взрыв должен быть ядерным, чтобы создать ощутимое сопротивление движению объекта, что недопустимо для Земли и космоса. Импульс силы недостаточен для предотвращения столкновения или снижения силы при столкновении. Целью технического решения является повышение импульса силы, который препятствует движению объекта к Земле. Технический результат достигается тем, что в ракете размещают жидкую среду, а ее вывод из ракеты осуществляют до контакта с объектом на его траектории. Пояснения к способу: 1. Движение объекта к Земле происходит со скоростью не меньше второй космической до входа в плотные слой атмосферы, а после вхождения в плотные слои атмосферы происходит торможение за счет взаимодействия с воздушной средой и образования воздушной подушки перед своим фронтом на траектории движения объекта. И плотность, которая меняется нелинейно, и подушка зависят от плотности воздушной среды и чем больше плотность, тем больше сопротивление среды. 2. Ракета выводит водную среду из своей полости и она располагается на траектории движения объекта. Испарение и распределение за счет диффузии будет мало, т.к. речь идет о сотых долях секунды до подлета к области, где средняя плотность повышена, причем позади объекта будет пониженное давление как за счет образования вакуума, так и за счет пониженного давления. Такое воздействие нужно начинать на высоте, где имеется технический вакуум, допустим 10-6 мм рт. ст. , а перед объектом можно получить среднее давление, точнее плотность, до 400-500 кг/м3, а при использовании ртути (если расчеты покажут, что в малых количествах это допустимо) можно повысить плотность на порядок. Кроме этого, будет протекать процесс испарения жидкой среды от контакта с раскаленным объектом, что также повысит удельное давление сопротивления движению объекта. Повышение сопротивления в сотни раз позволит гарантировать, даже если будет контакт объекта с Землей, отсутствие разрушения и смещения орбиты. Это видно и по опыту тунгусского метеорита: удара не было бы. Вывод жидкой среды можно осуществить за счет газа под давлением при разбивке ампулы от команды. Необходимо сделать следующее замечание относительно "жидкой среды", которую располагают в ракете и выводят на траектории движения объекта. Как указывалось, жидкой средой может быть вода и металл - ртуть. Может быть жидкой средой и металл в твердом состоянии (другое агрегатное состояние, как и вода), например свинец, который при контакте с раскаленной поверхностью объекта испарится и будет в другом агрегатном состоянии. Таким псевдо-газом может быть и мелкая дробь, которая не расплавится (допустим, время для ее оплавления и испарения значительно) и будет вести себя как "газ", который обладает преимуществами, заключающимися в том, что практически будет отсутствовать диффузия. Это все эквивалентные технические решения, но они показывают широкий диапазон создания повышенной средней плотности перед объектом и это позволяет получить эффект брошенного камня по касательной к поверхности воды. Действительно, повышение плотности на границе до объекта и после него создает эффект скольжения объекта по направлению действия силы от воздушной массы, направление движения которой совпадает с направлением вращения Земли. Это будет приводить дополнительно к смещению траектории движения объекта с отклонением от прямой и может привести к прохождению объекта перед Землей или за ней в зависимости от направления воздействия эффекта повышения плотности окружающей среды, где и происходит движение объекта. Т. е. может иметь место и ускорение движения объекта по касательной, если плотность будут повышать позади объекта и одновременно снизу. Непременным является направленное повышение средней плотности среды перемещения объекта перед объектом, позади него, различным сочетанием в зависимости от расчетной траектории движения объекта и, желательно, до соприкосновения со слоями атмосферы, чтобы повысить эффект от вакуума позади объекта. Расчет к заявке. Расчет носит прикидочный характер и предназначен для оценки порядка энергии и необходимого воздействия на объект, а также возможности технического воздействия. Принимаем объект радиусом 100 метров, плотность - 8000 кг/м3. Тогда масса объекта составит








Расчет показал, что сила должна быть на два порядка больше для гашения энергии объекта, а такое значение легко получается введением жидкой среды, которая должна иметь среднюю плотность 70 кг/м3, т.е. занимать объем 6% от общего объема перед объектом, считая, что плотность воды 1000 кг/м3. Выведение ракеты для совпадения с траекторией движения объекта должно производиться против вращения. Это можно осуществить путем выведения с летательного аппарата на максимальных высотах либо путем разворота ракеты после вывода ее за атмосферу. Расчеты показывают реальность предложенного способа для устранения катастрофы при возможном столкновении Земли с объектом.
Формула изобретения
РИСУНКИ
Рисунок 1