Электронно-оптическое дифрактометрическое устройство
Изобретение относится к электронным приборам, работающим в электронографическом режиме с пико-фемтосекундным временным разрешением, и может быть использовано для изучения структурных превращений вещества при проведении исследований в области физики, химии, биологии, медицины, в приборо- и машиностроении. Техническим результатом является повышение временного разрешения (до сотен фемтосекунд) и расширение функциональных возможностей. Устройство содержит расположенные по ходу электронного пучка в вакуумном корпусе фотокатод, фокусирующую систему, анодную диафрагму, электронный затвор, отклоняющую систему типа "бегущая волна", блок мишеней, регистратор электронного изображения и считывающую систему на основе ПЭС-матрицы. В фокусирующую систему дополнительно к ускоряющему и фокусирующему электроду введен корректирующий электрод, причем параметры их находятся в фиксированной пропорции между собой, что обеспечивает минимальное сечение электронного пучка в плоскости испытуемой мишени, при этом плоскости мишени и кроссовера совмещены. Это обеспечивает фокусирование в плоскости выходного экрана изображения фотокатода и дифракционной картины. В корпусе выполнены оптические окна для подвода лазерного излучения синхронно с электронным импульсом к мишени, расположенной в блоке мишеней, представляющего собой устройство с гнездами для установки исследуемых образцов. 3 з.п.ф-лы, 1 ил.
Изобретение относится к электронной технике, в частности к приборам, работающим в электронографическом режиме с пикофемтосекундным временным разрешением, и используется для изучения структур вещества и их изменений при проведении исследований в области физики, химии, геологии, биологии, медицины, материаловедения, в электронной промышленности, в приборо- и машиностроении.
Электронно-оптическое дифрактометрическое устройство (ЭОДУ) может служить в качестве фотоэлектронного дифрактометра для проведения экспериментов по сверхбыстрой дифракции электронов на твердотельных или газовых мишенях с возможностью синхронного подогрева мишени излучением лазера и измерением по длительности потока электронов, падающих на мишень, обеспечивая на экране ЭОДУ регистрацию дифракционной картины, анализ которой дает информацию о процессах, происходящих внутри исследуемой среды на атомном и молекулярном уровнях. Известны электронографы [1-3], использующие явление дифракции электронов для структурного анализа вещества. В таких электронографах источник (холодный острийный катод или термокатод) создает непрерывный поток электронов, которые рассеиваются на исследуемом образце, и с помощью электростатической или электромагнитной электронной линзы фокусируются в плоскости изображений (люминесцентный экран, фотопластинка, ПЗС-матрица и т.п.) как первичный, так и дифрагированный электронные пучки. В электронографах наибольшее распространение получили схемы микродифракции электронов высокой энергии (20 - 100 кэВ) от выбранных участков исследуемого образца [4-5]. В этих устройствах применяются источники сверхтонких (несколько десятков ангстрем) электронных пучков и многоэлементные электронные линзы, обеспечивающие точную фокусировку как исходного, так и дифрагированного пучков (нанодифракция), в том числе с увеличением масштаба дифракционных картин. Наиболее близким по технической сущности к предлагаемому решению является электронно-оптическое дифрактометрическое устройство, содержащее в вакуумном объеме плоский фотокатод, за ним расположенные по ходу электронного пучка, конусную электростатическую фокусирующую систему, включающую ускоряющий и фокусирующий электроды для формирования электронного пучка, анодную диафрагму, мишень, люминесцентный экран и микроканальный усилитель яркости [6]. Однако известное электронно-оптическое устройство не может работать в режиме регистрации дифракционных картин с фемтосекундным временным разрешением и не позволяет измерять длительность электронного потока, воздействующего на мишень. Технической задачей настоящего изобретения является повышение временного разрешения (до сотен фемтосекунд) и расширение функциональных возможностей устройства. Поставленная задача достигается тем, что в известное электронно-оптическое дифракционное устройство, содержащее в вакуумном корпусе фотокатод, за ним последовательно расположенные по ходу электронного пучка электростатическую фокусирующую систему, анодную диафрагму, мишень, люминесцентный экран и микроканальный усилитель яркости, за анодной диафрагмой по ходу электронного пучка введен быстродействующий электронный затвор и после электронного затвора введена симметричная меандровая отклоняющая система типа "бегущая волна" (ОСБВ). С обеих концов ОСБВ согласована с коаксиальными, 50- омными разъемами, причем к разъемам, расположенным в начале системы, подводятся управляющие отклоняющие электрические импульсы с длительностью фронта 50-100 пс, а к разъемам, расположенным в конце системы (по ходу движения электронного пучка), подсоединяется нагрузка. Далее по ходу движения электронного пучка расположен блок мишеней, представляющий собой устройство с гнездами для установки нескольких взаимозаменяемых образцов, введение которых в плоскость "кроссовера" (плоскость наименьшего сечения электронного пучка) осуществляется с помощью вакуумного штока, управляемого электромагнитом. В блоке мишеней предусмотрено одно пустое гнездо для беспрепятственного прохождения электронного пучка с целью работы ЭОДУ в режиме линейной развертки (стрик-камера) для прямого измерения длительности электронного импульса, воздействующего на мишень. Во второе гнездо установлен люминесцентный экран для пространственного сведения на мишени электронного потока и греющего лазерного излучения. Остальные гнезда используются для установки исследуемых образцов вещества. В вакуумном корпусе предусмотрены специальные оптические окна, установленные с обеих сторон корпуса: одно для подведения греющего лазерного излучения, другое - для визуального наблюдения при сведении на мишень электронного потока и греющего лазерного излучения. Следует отметить, что в оптическую линию греющего лазерного излучения вводится оптическая задержка, позволяющая синхронизовать время прихода на мишень греющего излучения с электронным импульсом. Регистрация фотоэлектронных импульсов и дифракционных картин с люминесцентного экрана дифрактометра осуществляется на считывающее устройство на основе ПЗС-матрицы через микроканальный усилитель яркости. Усилитель яркости устанавливается снаружи вакуумного корпуса дифрактометра и пристыковывается к люминесцентному экрану и ПЗС-матрице через волоконно-оптические диски. Чувствительность системы обеспечивает регистрацию одиночных фотоэлектронов, эмитируемых входным фотокатодом ЭОДУ. Существенно переработана электростатическая фокусирующая система ЭОДУ с тем, чтобы положение "кроссовера" оставалось в плоскости установки мишеней при изменении анодного напряжения и напряжения между фотокатодом и ускоряющим электродом на ЭОДУ в пределах 20 - 40 кВ и 5-10 кВ соответственно, причем обеспечивалось бы фокусирование на выходном экране как изображения фотокатода, так и дифрагированных на мишени электронных пучков. Она выполнена в виде трех осесимметричных цилиндров-электродов, включающих последовательно расположенные ускоряющий (длина L1), фокусирующий (длина L2) и корректирующий (длина L3) электроды, причем отношение длин электродов и расстояний между ними (l12 и l23), а также расстояния между корректирующим электродом и анодом (l) к диаметру ускоряющего электрода (D) находится в пределах 5.3














тип фотокатода - S1/S20
тип мишени - A1,
толщина мишени - 300

длительность лазерного импульса на фотокатоде - 60 фс,
длительность фотоэлектронного импульса на мишени - <550 фс
размер электронного пятна на мишени - 0,5-1 мм
число электронов в одиночной вспышке - 102-103
1. Разработанное устройство может работать в режиме дифрактометра или в режиме электронографа и позволяет измерять длительность зондирующих мишени фотоэлектронных импульсов в фемтосекундном диапазоне при проведении экспериментов по сверхбыстрой дифракции электронов на твердотельных и газообразных мишенях. Повысилось временное разрешение - двумерные картины исследуемых процессов получены на дифрактометре с разрешением 550 фс, что почти в 200 раз превосходит прототип. 2. Ширина спектральной области, в зависимости от типа и чувствительности используемого в устройстве фотокатода, охватывала УФ, видимый и инфракрасный диапазоны. 3. Технические возможности прибора расширились благодаря разработанному считывающему устройству, совместимому с компьютером, что позволяет автоматизировать обработку полученных данных, на основе охлаждаемой ПЗС-матрицы, работающей в режиме медленного сканирования и обеспечивающей регистрацию одиночных фотоэлектронов. Литература:
1. 3. Г. Пинскер. Дифракция электронов. М.; Л. Издательство АН СССР, 1949, 404 с. 2. Вайнштейн. Структурная электронография. М., Изд-во АН СССР, 1956, 320 с. 3. Б. Б. Звягин. Методы дифракции электронов и решаемые ими задачи. В книге "Методы структурного анализа" М., Изд-во "Наука", 1989. 4. Fifty years of electron diffraction. /Ed. P. Goodman. Dordrecht: Reidel, 1981, 440 p. 5. Б.Б. Звягин, А.Н. Горшков. Электронная микроскопия и дифракция электронов (микродифракция). Методы электронной микроскопии минералов. М.; Изд-во "Наука", 1969, с. 207 - 310. 6. G. Mourou, S.Williamson. Picosecond electron diffraction. Appl. Phys. Lett. 41 (1), 1 July 1982, pp. 44-45. Прототип.
Формула изобретения
5,3












что обеспечивает фокусирование в плоскости выходного экрана как изображение фотокатода, так и дифракционной картины, причем геометрическое положение кроссовера остается в плоскости размещения мишени независимо от изменения ускоряющих напряжений. 3. Устройство по п.1, отличающееся тем, что введены дополнительные мишени, собранные в блок, представляющий собой устройство с гнездами для установки нескольких взаимозаменяемых мишеней, введение которых в плоскость кроссовера осуществляется с помощью вакуумного штока, управляемого электромагнитом, причем одно гнездо оставлено пустым для беспрепятственного прохождения электронного пучка и последующего измерения его длительности, во второе гнездо установлен люминесцентный экран для пространственного сведения электронного потока и греющего лазерного излучения, а остальные гнезда используются для установления исследуемых образцов. 4. Устройство по п.1, отличающееся тем, что в вакуумном корпусе выполнены одинаковые оптические окна, одно из которых служит для подведения лазерного излучения синхронно с электронным просвечивающим импульсом к мишени, расположенной в блоке мишеней, другое - для визуального наблюдения.
РИСУНКИ
Рисунок 1