Устройство для механической обработки твердых материалов
Авторы патента:
Устройство представляет собой твердое тело, рабочая часть которого выполнена из твердого сплава с ферромагнитной связкой. Ферромагнитная связка введена в приповерхностный слой рабочей части тела, причем концентрация металлического кобальта составляет не менее 0,3 мас.%, а толщина слоя - не менее 2,0 мкм. Технический результат: увеличение срока службы рабочей части тела в 6 раз. 4 ил., 2 табл.
Изобретение относится к области машиностроения, преимущественно к холодной и горячей механической обработке металлов, в частности к устройствам, рабочей частью которых является твердосплавный инструмент.
Известно устройство для механической обработки твердых материалов, представляющее собой твердое тело, рабочая часть которого выполнена из твердого сплава на основе карбида титана с железной связкой (карбидостали) [1]. Известно устройство для механической обработки твердых материалов, представляющее собой твердое тело, рабочая часть которого выполнена из твердого сплава на основе монокарбида вольфрама с никелевой связкой [2]. Наиболее близким к заявляемому устройству является устройство для механической обработки твердых материалов, представляющее собой твердое тело, рабочая часть которого выполнена из твердого сплава на основе монокарбида вольфрама с кобальтовой связкой [3]. Недостатками известных устройств являются: износостойкость устройств с рабочей частью состава TiC-Fe ниже, чем у рабочей части устройств состава WC-Co, прочность, твердость и износостойкость устройств с рабочей частью WC-Ni ниже, чем у рабочей части устройств состава WC-Co, распределение кобальта в рабочей части устройств нередко является крайне неоднородным и в приповерхностном слое его содержание ниже, чем в остальном объеме. Целью создания настоящего изобретения является возможность получения "износостойкого покрытия", встроенного в приповерхностный слой рабочей части устройства и позволяющего до шести раз увеличить срок ее службы. Поставленная цель достигается тем, что ферромагнитная связка - металлический кобальт и твердые растворы на его основе - введена в приповерхностный слой рабочей части тела, причем концентрация металлического кобальта составляет не менее 0,3 массового процента, а толщина слоя - не менее 2,0 мкм. Положительный эффект от создания и использования настоящего изобретения проявляется: в том, что металлический кобальт и твердые растворы на его основе, введенные в приповерхностный слой рабочей твердосплавной части устройства, образуют вместе с карбидами тугоплавких металлов "износостойкое покрытие", обладающее большей по сравнению с остальной рабочей частью пластичностью, в том, что "износостойкое покрытие" обладает идеальной адгезией, так как является приповерхностной областью рабочей части из твердосплавного материала, в том, что указанное расположение металлического кобальта и твердых растворов на его основе в приповерхностной области рабочей твердосплавной части устройства позволяет применить к нему известные методы радиационной обработки, в несколько раз увеличивающие срок службы устройства. Перечень графических изображений. Фиг. 1 - профиль распределения по глубине концентрации кобальта в режущей пластине из твердого сплава T15KG (образец N 1); фиг. 2 - профиль распределения по глубине концентрации кобальта в режущей пластине из твердого сплава T15KG (образец N 2); фиг. 3 - профиль распределения по глубине концентрации кобальта в режущей пластине из твердого сплава ВК3М (образец N 3). Время распыления tр = 7 мин 21 с; фиг. 4 - профиль распределения по глубине концентрации кобальта в режущей пластине из твердого сплава (образец N 3). Время распыления tр = 23 мин 34 с. Сущность заявленного изобретения поясняется нижеследующим описанием. Изобретение основано на анализе результатов многочисленных экспериментов по радиационному упрочнению твердосплавного инструмента, проведенных нами в последние годы. Суть их кратко сводится к следующему: радиационная обработка (облучение быстрыми электронами, протонами,



























и

Ho при облучении ионами кислорода углерода (основного компонента всех карбидов) имеет место так называемое "химическое распыление" [8], для которого коэффициент распыления при E = 7,9 кэВ несколько превышает единицу (S = 1,05 aт.C/O+2). Положим, что коэффициент распыления монокарбида вольфрама ионами кислорода также равен 1,05. Согласно данным, представленным на профилях W, Ti, C и Co в приповерхностных слоях образцов 1 и 2, полное время распыления составило t1р = 22 мин 23 с = 1343 с и t2р = 16 мин 59 с = 1019 с. Следовательно, за время t1р распылится N1WC = 1,44











За время tр удалено NWC молекул WC/см2. Поэтому толщина распыленного слоя d равна


Оценим теперь реальную величину концентрации кобальта, регистрируемую рентгеновским дифрактометром. Вид профиля концентрации атомов кобальта, в образце N 1, полученный методом ВИМС, соответствует случаю [9] конечной скорости испарения атомов Co с поверхности. Предположим, что процесс спекания идет так, что плотность атомов Co на поверхности остается постоянной, т.е. диффузия атомов Co к поверхности восполняет убыль атомов Co за счет испарения. Тогда, согласно [9],

где n((x,

x - расстояние, отсчитываемое от поверхности в глубину слоя;

N - концентрация атомов кобальта в объеме;
D - коэффициент диффузии атомов кобальта;



где

Ф(z) - функция ошибок. Анализируя профиль распределения атомов Co, полученный методом ВИМС, в образце N 1 мы нашли, во-первых, что



Заметим, что физический смысл интеграла в (7) - поверхностная концентрация - количество частиц на единицу поверхности с размерностью см-2. В действительности

где Ф*(z) = 1 - Ф(z) (9)
Пользуясь приложением 2 монографии [10], в котором изложены свойства функции ошибок и родственных ей функций, получаем, что

при выбранных значениях Za не зависит от Za с точностью до бесконечно малых высших порядков и равен 0,5642. Следовательно

Итак, для za = 14,1 интеграл (10) равен 13,537 NL, а отношение

Поэтому мы полагаем, что при исследовании образца N 1, изготовленного из твердого сплава Т15К6, рентгеновским дифрактометром он регистрировал не значение концентрации кобальта в объеме, равное 5,21 мас.%, а меньшую величину, равную 0,961 5,21 = 5,00 мас.%. Оценим теперь концентрацию кобальта, регистрируемую рентгеновским дифрактометром в образце N 2 из твердого сплава Т15К6 (см. фиг. 2). Положим, что в интервале 0,33 мкм - 3,76 мкм, превышающем интервал 0 - 0,33 мкм, исследованный методом ВИМС, величина концентрации кобальта постоянна и равна n0(n0 = 2





В интервале x = 0,138 мкм - 0,33 мкм (или z = 0,516 - 1,24) поверхностная концентрация кобальта равна

Итак, поверхностная концентрация кобальта, измеренная рентгеновским дифрактометром в образце N 2, равна:
L(12,86n0 + 1,032n0 + 1,06n0 = 14,952n0L
Выше показано, что эта же величина в образце N 1 равна 13,537 NL. Величина N, рассчитанная нами по профилю фиг. 1, равна N = 1,275


равно

Итак, в этой серии опытов рентгеновский дифрактометр "не замечал" в образце N 2 из твердого сплава Т15К6 концентрацию кобальта, равную

Обратимся теперь к анализу профилей W, C и Cо в образце из твердого сплава ВК3М (фиг. 3 и 4). В данном случае энергия ионов кислорода составляла 8,1 кэВ. Ионный ток равнялся 654 нА (фиг. 3) и 548 нА (фиг. 4). Площади облучаемой ионами и анализируемой поверхностей не изменялись по сравнению с образцами 1 и 2 и равнялись, соответственно 6,25





Положим, как и ранее, что коэффициент распыления составляет S = 1,05 WC/O+2. Время распыления равнялось: t3р = 7 мин 21 с = 441 с и t4р = 23 мин 34 с = 1414 с. Следовательно, за время t3р распылится N3WC = 6,54










Как видно из фиг. 3 и 4, профили кобальта на них отличаются между собой лишь толщиной распыленного слоя. Рассмотрим далее только более глубокий профиль кобальта, изображенный на фиг. 4. Аппроксимируем реальный ход профиля ломаной линии, для чего разобьем его на 11 участков. Элементарный расчет, который мы не приводим в описании, показывает, что суммарная площадь ограниченная ломаной, осью абсцисс и ординатами, проходящими через начало и конец профиля, составляет

При расчете мы вновь положили, что z = 1 соответствует L = 0,267 мкм, а n0 = 2


Сопоставим теперь концентрации, измеренные рентгеновским дифрактометром, в образцах 2 и 3. Напомним, что в образце 2, S = 14,952n0L для



По оси ординат на фиг. 1-4 отложены величины, имеющие размерность - количество импульсов за секунду. Чтобы правильно сопоставлять данные фиг. 2 и фиг. 4, надо отнести их к количеству распыленного вещества за 1 секунду. На фиг. 2 за 1 с распылялось 0,33 мкм : 1019 с = 3,24






должна быть уменьшена в 3,7 раза. Она составит 0,344 мас.%











1. Плоские рабочие твердосплавные части устройства легируют кобальтом одним из указанных ниже известных методов: методом ионной имплантации с последующей разгонкой стационарным или импульсным фотонным отжигом, методом напыления (например, электронно-лучевого) кобальта в вакууме с последующей разгонкой, методом катодного распыления с последующей разгонкой. 2. Рабочие твердосплавные части устройства сложной формы (не плоские) легируют кобальтом одним из указанных ниже известных методов: методом ионно-плазменного напыления с последующей разгонкой, методом гальванического осаждения с последующей разгонкой. 3. Рабочие твердосплавные части устройства любой формы легируют кобальтом также одним из следующих методов, некоторые из которых известны выбором режимов стационарного спекания, импульсным спеканием, нагревом в вакууме спеченного изделия. Роль металлического кобальта показана выше на примере режущих пластин, изготовленных из твердых сплавов на основе монокарбида вольфрама с кобальтовой связкой. Однако в связи с тем, что физические и механические свойства кобальта не изменяются в других твердых сплавах и в сочетании с другими ферромагнитными связками (железо, никель), в предлагаемом устройстве можно использовать и эти связки. Источники информации
1. Гуревич Ю.Г., Нарва В.К. Карбидостали. - М.: Металлургия, 1989. - 25 с. 2. Третьяков В.И. Основы металловедения и технологии производства спеченных твердых сплавов. - M.: Металлургия, 1976. - С. 96-113. 3. Третьяков В.И. Основы металловедения и технологии производства спеченных твердых сплавов. - М.: Металлургия, 1976. - С. 125-205 (прототип). 4. Миркин Л.И. Справочник по рентгеноструктурному анализу поликристаллов. - М.: ГИФМЛ. - 1961. - 84 с. 5. Блохин М. А. Физика рентгеновских лучей. - М.: Гостехиздат, 1953. - 456 с. 6. Дэшмен С. Научные основы вакуумной техники. - М.: ИЛ, 1950. - 696 с. 7. Несмеянов А. Н. Давление пара химических элементов.- М.: Изд-во АН СССР, 1961. - 396 с. 8. Рот И. Химическое распыление// Распыление твердых тел ионной бомбардировкой. Вып. II. - М.: Мир, 1986. - С. 134-204. 9. Влияние испарения летучего компонента на электрические свойства CdSb / Л.И. Анатычук, В.М. Кондратенко, О.Я. Лусте, И.Т. Хавруняк // Неорганические материалы. - 1972. - Т. VIII, N 4. - С. 653-658. 10. Карслоу Г., Егер Д. Теплопроводность твердых тел.- М.: Наука, 1964. - 488 с.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6
Похожие патенты:
Изобретение относится к созданию инструмента из цементированного карбида с износостойким покрытием, полученным осаждением из газовой фазы, который используется в металлообработке с образованием стружки
Изобретение относится к режущему инструменту с алюмоксидным покрытием для механической обработки металлов со снятием стружки
Режущая пластина // 2122484
Изобретение относится к области машиностроения, в частности к обработке материалов резанием
Изобретение относится к керамике на основе нитрида кремния, которая особенно полезна для использования в качестве режущего инструмента при высокоскоростной стружкообразующей механической обработке металлических материалов
Изобретение относится к режущей пластине из твердого спеченного изделия, состоящей из композиционного спеченного корпуса из спеченного изделия, которое получают из кубического нитрида бора (эльбора) (далее называемого в данном материале CBN), или из алмаза и цементированного карбида, или т.п., к режущей пластине из спеченного изделия с покрытием, которую получают путем покрытия режущей пластины из спеченного изделия износостойким слоем, и к способу их изготовления
Режущий инструмент (варианты) // 2071869
Изобретение относится к упрочнению режущего инструмента, в частности касается таких покрытий режущих вставок, которые могут быть подвержены неоднократным ударным нагрузкам во время эксплуатации, возникающим, например, при фрезеровании или других прерывистых операциях резания
Композитная алмазная абразивная прессовка // 2068318
Изобретение относится к композитным алмазным абразивным прессовкам
Устройство для крепления пластин // 2056219
Изобретение относится к металлообработке и может быть использовано при заточке и восстановлении сменных многогранных пластин (СМП) разной формы в мелкосерийном производстве
Режущая пластина для механического крепления // 2008134
Изобретение относится к обработке материалов резанием, в частности к режущему инструменту для черновой обработки сталей
Способ изготовления составных деталей // 2096133
Изобретение относится к способу изготовления составных деталей, полученных литьем под давлением порошкообразных материалов
Изобретение относится к способам нанесения защитных покрытий и может быть использовано в машиностроении для повышения износостойкости инструментов и деталей машин
Способ изготовления составных изделий // 2056973
Изобретение относится к порошковой металлургии, в частности к способам получения составных сложнопрофильных изделий, содержащих детали из порошкового материала
Износостойкий инструмент // 2044605
Изобретение относится к стекольному машиностроению, а также электротехнической промышленности, и может быть использовано при производстве стеклянных изделий на стеклоформующих машинах, а также для производства держателей электродов, электроконтакторов, нагревателей и т.д
Изобретение относится к области металлургии, в частности к режущим инструментам на основе спеченных твердых сплавов с покрытиями
Способ изготовления биметаллических труб // 1822388
Способ обработки металлорежущего инструмента // 1767773
Изделия из композитного кермета // 2135328