Производные бензофуран-2-онов, стабилизированная композиция, способ стабилизации, производные миндальной кислоты и способ их получения
Авторы патента:
Изобретение относится к новым производным бензофуран-2-онов формулы 1, где значение заместителей указано в п.1 формулы, которые могут найти применение в качестве стабилизаторов органических полимеров, подверженных окислительному, термическому или индуцированному светом распаду. Описываются также стабилизированные композиции на основе соединения формулы 1, а также способ стабилизации органического материала с использованием соединения формулы 1. Описан также способ получения соединений формулы 1. 5 с. и 18 з.п. ф-лы, 4 табл.







и, если m=4, R1 обозначает C6-C18-алкантетракарбонил или C10-C18-арилтетракарбонил, R2, R3, R4 и R5 представляют собой независимо друг от друга водород, хлор, C1-C25-алкил, C7-C9-фенилалкил, незамещенный или замещенный C1-C4-алкилом фенил, незамещенный или замещенный C1-C4-алкилом C5-C8-циклоалкил; C1-C18-алкокси, C1-C18-алкилтио, гидрокси,
C1-C4-алкиламино, ди-(C1-C4-алкил)амино, C1-C25-алканоилокси, C1-C25-алканоиламино, C3-C25-алкеноилокси, разорванный кислородом, серой или


где R1 имеет то же указанное выше значение, что и при m=1, R6 представляет собой водород или остаток формулы (3)

причем R4 не является остатком формулы (2), a R1 имеет то же указанное выше значение, что и при m=1,
R7, R8, R9 и R10 представляют собой независимо друг от друга водород, C1-C4-алкил или C1-C4-алкокси, при условии, что по крайней мере один из остатков R7, R8, R9 и R10 представляет собой водород,
R11 обозначает гидрокси,


R12 и R13 представляют собой независимо друг от друга водород, CF3, C1-C12-алкил или фенил, или же R12 и R13 вместе с атомом углерода, с которым они связаны, образуют незамещенное или замещенное от 1 до 3 C1-C4-алкилом C5-C8-циклоалкилиденовое кольцо;
R14 и R15 представляют собой независимо друг от друга водород или C1-C18-алкил,
R16 обозначает водород или C1-C8-алкил,
R17 представляет собой водород или C1-C4-алкил,
R18 обозначает водород, незамещенный или замещенный C1-C4-алкилами фенил; C1-C25-алкил, разорванный кислородом, серой или



R19 представляет собой водород или C1-C4-алкил,
R20 обозначает водород или C1-C4-алкил,
R21 представляет собой прямую связь, C1-C18-алкилен, разорванный кислородом, серой или


R22 обозначает кислород,-NH или,

R23 представляет собой C1-C18-алкил или фенил,
R24 представляет собой C2-C18-алкилен, C5-C8-циклоалкилен или фенилен,
R25 обозначает прямую связь, C1-C18-алкилен или же разорванный кислородом, серой или

М является катионом r-валентного металла,
m = 1, 2, 3 или 4, причем, если m = 2, 3 или 4, R6 обозначает водород,
n = 0, 1 или 2, и
r = 1, 2 или 3. Алканоил с числом атомов углерода до 25 обозначает разветвленный или неразветвленный остаток, как, например, формил, ацетил, пропионил, бутаноил, пентаноил, гексаноил, гептаноил, октаноил, нонаноил, деканоил, ундеканоил, додеканоил, тридеканоил, тетрадеканоил, пентадеканоил, гексадеканоил, гептадеканоил, октадеканоил, эйкозаноил или докозаноил. Предпочтительным значением R1 является C1-C18-алканоил. Особо предпочтительным значением R1 является C2-C4-алканоил. Алкеноил с числом атомов углерода от 3 до 25 обозначает разветвленный или неразветвленный остаток, как, например, пропеноил, 2-бутеноил, 3-бутеноил, изобутеноил, н-2,4- пентадиеноил, 3-метил-2-бутеноил, н-2-октеноил, н-2-додеценоил, изододеценоил, олеоил, н-2-октадеценоил или н-4-октадеценоил. Разорванный кислородом, серой или

CH3-O-CH2CH2-O-CH2CO-, CH3-(O-CH2CH2-)2O-CH2CO-, CH3-(O-CH2CH2-)3O-CH2CO- или CH3-(O-CH2CH2-)4O-CH2CO-. Предпочтителен метоксиацетил. Замещенный ди(C1-C6-алкил)фосфонатной группой C2-C25-алканоил обозначает, например, (CH3CH2O)2POCH2CO-, (CH3O)2POCH2CO-, (CH3C-H2CH2CH2O)2POCH2CO-, (CH3CH2O)2POCH2CH2CO-, (CH3O)2POCH2CH2-CO-, (CH3CH2CH2CH2O)2POCH2CH2CO-,
(CH3CH2O)2PO(CH2)4CO-, (CH3CH2O)2PO(CH2)8CO- или (CH3CH2O)2PO(CH2)17CO-. C6-C9-Циклоалкилкарбонил представляет собой, например, циклопентилкарбонил, циклогексилкарбонил, циклогептилкарбонил или циклооктилкарбонил. Предпочтителен циклогексилкарбонил. Замещенный C1-C12-алкилом бензоил представляет собой, например, о-, м- или п-метилбензоил, 2,3- диметилбензоил, 2,4-диметилбензоил, 2,5-диметилбензоил, 2,6- диметилбензоил, 3,4-диметилбензоил, 3,5-диметилбензоил, 2-метил-6- этилбензоил, 4-трет.-бутилбензоил, 2-этилбензоил, 2,4,6- триметилбензоил, 2,6-диметил-4-трет.-бутилбензоил или 3,5-дитрет.- бутилбензоил. C4-C18-Алкантрикарбонил представляет собой разветвленный или неразветвленный остаток, как, например, метантрикарбонил, 1,1,2-этантрикарбонил, 1,2,3-пропантрикарбонил или 1,2,3-бутантрикарбонил. C9-C18-Арилтрикарбонил представляет собой, например, 1,2,4-бензолтрикарбонил (производное тримеллитовой кислоты) или 1,3,5-бензолтрикарбонил (производное тримезиновой кислоты). C6-C18-Алкантетракарбонил представляет собой разветвленный или неразветвленный остаток, как, например, 1,1,3,3-пропантетракарбонил или 1,2,3,4-бутантетракарбонил. C10-C18-Арилтетракарбонил представляет собой, например, 1,2,4,5-бензолтетракарбонил (производное пиромеллитовой кислоты). Алкил с числом атомов углерода до 25 представляет собой разветвленный или неразветвленный остаток, как, например, метил, этил, пропил, изопропил, н-бутил, втор. -бутил, изобутил, трет.-бутил, 2-этилбутил, н-пентил, изопентил, 1-метилпентил, 1,3-диметилбутил, н-гексил, 1-метилгексил, н-гептил, изогептил, 1,1,3,3-тетраметилбутил, 1-метилгептил, 3-метилгептил, н-октил, 2-этилгексил, 1,1,3-триметилгексил, 1,1,3,3-тетраметилпентил, нонил, децил, ундецил, 1-метилундецил, додецил, 1,1,3,3,5,5- гексаметилгексил, тридецил, тетрадецил, пентадецил, гексадецил, гептадецил, октадецил, эйкозил или докозил. Одним из предпочтительных значений R2 и R4 является, например, C1- C18-алкил. Особо предпочтительным значением R4 является C1-C4-алкил. C7-C9-Фенилалкил представляет собой, например, бензил,




CH3-(O-CH2CH2-)3O-CH2COO- или CH3-(O-CH2CH2-)4O-CH2COO-. C6-C9-Циклоалкилкарбонилокси представляет собой, например, циклопентилкарбонилокси, циклогексилкарбонилокси, циклогептилкарбонилокси или циклооктилкарбонилокси. Предпочтителен циклогексилкарбонилокси. Замещенный C1-C12-алкилом бензоилокси представляет собой, например, o-, м- или п-метилбензоилокси, 2,3-диметилбензоилокси, 2,4-диметилбензоилокси, 2,5-диметилбензоилокси, 2,6-диметилбензоилокси, 3,4- диметилбензоилокси, 3,5-диметилбензоилокси, 2-метил-6- этилбензоилокси, 4-трет.-бутилбензоилокси, 2-этилбензоилокси, 2,4,6-триметилбензоилокси, 2,6-диметил-4-трет.-бутилбензоилокси или 3,5-дитрет.-бутилбензоилокси. Замещенное C1-C4-алкилом C5-C8- циклоалкилиденовое кольцо, содержащее предпочтительно 1-3, особенно предпочтительно 1 или 2 разветвленных или неразветвленных остатка алкильных групп, представляет собой, например, циклопентилиден, метилциклопентилиден, диметилциклопентилиден, циклогексилиден, метилциклогексилиден, диметилциклогексилиден, триметилциклогексилиден, трет. -бутилциклогексилиден, циклогептилиден или циклооктилиден. Предпочтительны цикогексилиден и трет.-бутилциклогексилиден. Замещенное C1-C4-алкилом C5-C12-циклоалкиленовое кольцо, содержащее предпочтительно 1-3, особенно предпочтительно 1 или 2 разветвленных или неразветвленных остатка алкильных групп, представляет собой, например, циклопентилен, метилциклопентилен, диметилциклопентилен, циклогексилен, метилциклогексилен, диметилциклогексилен, триметилциклогексилен, трет.-бутилциклогексилен, циклогептилен, циклооктилен или циклодецилен. Предпочтительны цикогексилен и трет.-бутилциклогексилен. Разорванный кислородом, серой или






-CH2-O-CH2CH2-O-CH2-, -CH2-(O-CH2CH2-)2O-CH2-, -CH2-(O-CH2CH2-)3O-CH2-,
-CH2-(O-CH2CH2-)4O-CH2- или -CH2CH2-S-CH2CH2-. C2-C18-алкенилен представляет собой, например, винилен, метилвинилен, октенилэтилен или додеценилэтилен. Hаиболее предпочтителен C2-C8-алкенилен. Алкилиден с числом атомов углерода от 2 до 20 представляет собой, например, этилиден, пропилиден, бутилиден, пентилиден, 4-метилпентилиден, гептилиден, нонилиден, тридецилиден, нонадецилиден, 1-метилэтилиден, 1-этилпропилиден или 1-этилпентилиден. Наиболее предпочтителен C2- C6-алкилиден. Фенилалкилиден с числом атомов углерода от 7 до 20 представляет собой, например, бензилиден, 2-фенилэтилиден или 1-фенил-2-гексилиден. Наиболее предпочтителен C7-C9-фенилалкилиден. C5-C8-циклоалкилен представляет собой насыщенную углеводородную группу с двумя свободными связями и по крайней мере с одним замкнутым циклом, например циклопентилен, циклогексилен, циклогептилен или циклооктилен. Наиболее предпочтителен циклогексилен. C7-C8-бициклоалкилен представляет собой, например, бициклогептилен или бициклооктилен. Незамещенный или замещенный C1-C4-алкилом фенилен представляет собой, например, 1,2-, 1,3-или 1,4-фенилен. C2-C18-алкилен представляет собой разветвленный или неразветвленный остаток, как, например, этилен, пропилен, бутилен, пентаметилен, гексаметилен, гептаметилен, октаметилен, декаметилен, додекаметилен или октадекаметилен. Наиболее предпочтителен C2-C8-алкилен. Катион одно- , двух- или трехвалентного металла представляет собой предпочтительно катион щелочного металла, щелочноземельного металла или алюминия, например, Na+, К+, Mg++, Ca++ или Al+++. Наиболее предпочтительными являются соединения формулы (1), где, если m = 1,
R1 обозначает водород, C1-C18-алканоил, C3-C18-алкеноил, C3-C18-алканоил, разорванный кислородом, серой или



R2, R3, R4 и R5 представляют собой независимо друг от друга водород, хлор, C1-C18-алкил, бензил, фенил, C5-C8-циклоалкил, C1- C18-алкокси, C1-C18-алкилтио, C1-C18-алканоилокси, C1-C18-алканоиламино, C3-C18-алкеноилокси или бензоилокси, или же, далее, радикалы R2 и R3, или радикалы R4 и R5 образуют вместе с атомами углерода, с которыми они связаны, фенильное кольцо, или, если R3, R5, R6, R7 и R10 представляют собой водород, R4 обозначает дополнительно остаток формулы (2),
R7, R8, R9 и R10 представляют собой независимо друг от друга водород или C1-C4-алкил при условии, что по крайней мере один из радикалов R7, R8, R9 и R10 являются водородом,
R12 и R13 представляют собой метиловые группы или вместе с атомом углерода, с которым они связаны, образуют незамещенное или замещенное 1-3 C1-C4-алкилами C5-C8-циклоалкилиденовое кольцо;
R18 представляет собой водород, фенил, C1-C18-алкил, разорванный кислородом, серой или


R21 представляет собой прямую связь, C1-C12-алкилен, разорванный кислородом, серой или

R24 обозначает C2-C12-алкилен, C5-C8-циклоалкилен или фенилен, и
R25 представляет собой прямую связь, C1-C12-алкилен или разорванный кислородом, серой или

R1 обозначает водород, C1-C18-алканоил, C3-C12-алкеноил, разорванный кислородом C3-C12-алканоил; замещенный ди(C1-C6-алкил)фосфонатной группой C2-C12-алканоил; C6-C9- циклоалкилкарбонил, бензоил,

R2, R3, R4 и R5 представляют собой независимо друг от друга водород, C1-C18-алкил, C5-C7-циклоалкил, C1-C12-алкокси, C1-C12-алканоилокси или бензоилокси, или же, далее, радикалы R2 и R3 вместе с атомами углерода, с которыми они связаны, образуют фенильное кольцо, или, если R3, R5, R6 R7 и R10 являются водородом, R4 обозначает дополнительно остаток формулы (2),
R12 и R13 представляют собой метиловые группы или вместе с атомом углерода, с которым они связаны, образуют C5-C8-циклоалкилиденовое кольцо;
R18 обозначает водород, C1-C12-алкил, разорванный кислородом или серой C2-C12-алкил; разорванный кислородом или серой C7-C12-фенилалкил, или же, далее, радикалы R17 и R18 вместе с атомами углерода, с которыми они связаны, образуют C5-C8-циклоалкиленовое кольцо;
R21 представляет собой C1-C12-алкилен, фенилен или разорванный кислородом или серой C2-C12-алкилен;
R23 обозначает C1-C12-алкил;
R24 представляет собой C2- C12-алкилен или фенилен,
R25 обозначает C1-C8-алкилен или разорванный кислородом C2-C8-алкилен, и
m = 1, 2 или 3. Наибольший интерес представляют собой соединения формулы (1), где, если m=1,
R1 обозначает водород, C1-C18-алканоил, C3-C4-алкеноил, замещенный ди(C1-C4-алкил)фосфонатной группой C2-C4-алканоил; циклогексилкарбонил, бензоил,

если m=2,
R1 представляет

R2 обозначает водород, C1-C18-алкил или циклогексил,
R3 является водородом, или же, далее, радикалы R2 и R3 вместе с атомами углерода, с которыми они связаны, образуют фенильное кольцо,
R4 представляет собой C1-C4-алкил или циклогексил, или, если R3, R5, R6, R7 и R10 являются водородом, R4 обозначает дополнительно остаток формулы (2), где R1 имеет значение, приведенное выше для m=1,
R5 обозначает водород,
R6 представляет собой водород или остаток формулы (3), причем R4 не является каким-либо остатком формулы (2), а R1 имеет значение, приведенное выше для m = 1,
R7 обозначает водород,
R8 и R9 независимо друг от друга представляют собой водород, C1-C4-алкил или C1-C4-алкокси,
R10 обозначает водород,
R17 представляет собой водород,
R18 обозначает водород, C1-C4-алкил, разорванный кислородом C2-C8-алкил; или разорванный кислородом C7-C9-фенилалкил, или же, далее, радикалы R17 и R18 вместе с атомами углерода, с которыми они связаны, образуют циклогексиленовое кольцо,
R19 обозначает водород,
R20 обозначает водород или C1-C4-алкил,
R21 представляет собой C1-C8-алкилен, разорванный серой C2-C6-алкилен или фенилен;
R22 обозначает -NH или

R23 представляет собой C1-C4-алкил;
R24 обозначает C4-C8-алкилен,
m = 1 или 2,
n = 0 или 2. Предлагаемые согласно изобретению соединения формулы (1) могут быть получены по известной методике. Например, и этот способ предпочтителен, фенол формулы (5)

где R2, R3, R4 и R5 имеют указанные значения,
преобразуется с помощью замещенного в фенильном кольце производного миндальной кислоты формулы (6), где R7, R8, R9, R10, R17, R18 и R19 имеют указанные значения, и, если R17 и R19 являются водородом, R18 обозначает дополнительно остаток формулы (10)

где R7, R8, R9, R10 и R25 имеют указанные значения, при повышенной температуре, предпочтительно в пределах от 130 до 200oC в расплаве или в растворителе, при определенных условиях под неглубоким вакуумом, в соединения формулы (7)

Реакцию проводят предпочтительно в растворителе, как, например, уксусной кислоте, пропионовой кислоте или муравьиной кислоте, в температурных пределах от 50 до 130oC. Реакцию можно катализировать добавками какой-либо кислоты, например, соляной кислоты, серной кислоты или метансульфоновой кислоты. Реакция может проводиться, например, так же, как это изложено в публикациях, приведенных в вводной части описания. Полученные в результате этой реакции спирты формулы (7) можно с помощью общеизвестных методов этерификации (см. , например, Organikum 1986, стр. 402-408), в частности, путем ацилирования хлорангидридом кислоты или ангидридом кислоты формулы R11Cl, соответственно R11-O-R11 где R11 равнозначен R1, за исключением водорода, этерифицировать в соединения формулы (1). Если в качестве реагента вместо хлорангидрида кислоты применяют изоцианат формулы R23-N= C= O, то получают соответствующие карбаматы формулы (1), где R1 обозначает остаток

Предлагаемые согласно изобретению соединения формулы (1) могут быть получены в виде различных кристаллических модификаций. Спирты формулы (7) также с помощью общеизвестных способов переэтерификации (см., например, Organikum 1986, стр.388) например, путем переэтерификации

могут преобразовываться в соединения формулы (1). Образующийся во время реакции метанол постоянно отгоняют. 3-(2-Гидроксиэтоксифенил)бензофуран-2-оны формулы (7) также без отделения или очистки могут непосредственно с помощью хлорангидридов кислоты или ангидридов кислоты преобразовываться в 3-(2-ацилоксиэтоксифенил)бензофуран-2-оны формулы (1). Преобразование соединений формул (5) и (6) осуществляют предпочтительно путем кипячения обоих компонентов в растворе карбоновой кислоты, например уксусной кислоты или пропионовой кислоты. Реакционную воду удаляют путем отгонки, предпочтительно посредством азеотропной отгонки или же, в зависимости от растворителя, путем добавки соответствующего хлорангидрида кислоты, как, например, ацетилхлорид или пропионилхлорид, или добавляют ангидрид кислоты, например ангидрид уксусной кислоты или ангидрид пропионовой кислоты. В качестве конечных продуктов получают соответствующие 3-(2-ацилоксиэтоксифенил)бензофуран-2-оны формулы (1). 3-(2-Гидроксиэтоксифенил)бензофуран-2-оны формулы (7) могут быть получены также путем гидролиза или алкоголиза 3-(2-ацилоксиэтоксифенил)бензофуран-2-онов формулы (1). Реакцию проводят предпочтительно при нагревании с обратным холодильником в среде метанола, в которую добавляют концентрированную соляную кислоту. Фенолы формулы (5) известны или же могут быть получены известными способами. Бисфенольные соединения формулы (8)

могут быть получены с помощью способов, описанных в Houben-Weyl, Methoden der organischen Chemie, том 6/1c, 1030. 4-(2-Гидроксиэтокси)миндальные кислоты из публикаций практически неизвестны. Исключение составляет 4-(2-гидроксиэтокси)миндальная кислота, описанная в заявках на Европейский патент 146269 и 397170. Настоящее изобретение относится также к производным миндальной кислоты формулы (9)

где R7, R8, R9 и R10 независимо друг от друга представляют собой водород, C1-C4-алкил или C1-C4-алкокси, при условии, что по крайней мере один из радикалов R7, R8, R9 и R10 является водородом, и, если R7, R8, R9 и R10 одновременно являются водородом,
либо R17, R118, либо R19 имеют значения, отличные от водорода,
R16 обозначает водород или C1-C8-алкил,
R17 представляет собой водород или C1-C4-алкил,
R118 обозначает водород, незамещенный или замещенный C1-C4-алкилом фенил; C1-C25-алкил, разорванный кислородом или серой C2-C25-алкил; незамещенный C7-C9-фенилалкил или замещенный в фенильном кольце 1-3 C1-C4- алкилами; разорванный кислородом, серой или


R19 представляет собой водород или C1-C4-алкил, и
R25 обозначает прямую связь, C1-C18-алкилен или разорванный кислородом, серой или


R25 обозначает прямую связь, C1-C12-алкилен или разорванный кислородом, серой или

R118 обозначает водород, C1-C12-алкил, разорванный кислородом или серой C2-C12-алкил; разорванный кислородом или серой C7-C12- фенилалкил, или же, далее, радикалы R17 и R118 вместе с атомами углерода, с которыми они связаны, образуют C5-C8-циклоалкиленовое кольцо; и
R25 обозначает C1-C8-алкилен или разорванный кислородом C2-C8-алкилен. Особенно большой интерес представляют собой соединения формулы (9), где
R7, R10, R17 и R19 являются водородом, и
R118 обозначает водород, C1-C4-алкил, разорванный кислородом C2-C8-алкил; разорванный кислородом C7-C9-фенилалкил, или же, далее, радикалы R17 и R118 вместе с атомами углерода, с которыми они связаны, образуют циклогексиленовое кольцо. Соединения формулы (6) и формулы (9) могут быть получены с помощью известных способов. Как в заявке на Европейский патент 146269, так и в заявке на Европейский патент 397170 описывается алкилирование 4-гидроксиминдальной кислоты формулы (11), где R7, R8, R9 и R10 обозначают водород, проводимое бромэтанолом в щелочной среде, в результате чего получают 4-(2- гидроксиэтокси)миндальную кислоту.

Было найдено, что преобразование 4-гидроксиминдальных кислот формулы (11) в 4-(2-гидроксиэтоксифенил)миндальные кислоты формулы (6) и формулы (9), проводимое с помощью эпоксидов формулы (12), протекает очень легко и дает хороший выход. Настоящее изобретение относится также к новому способу получения соединений формулы (6)

где общие символы имеют то же значение, что и в формуле (1), и, если R17 и R19 являются водородом, R18 обозначает дополнительно остаток формулы (10)

в котором 4-гидроксиминдальную кислоту формулы (11) подвергают взаимодействию с эпоксидом формулы (12)

где R7, R8, R9, R10, R17, R18 и R19 имеют такое же значение, как это указано в формуле (1), и если R17 и R19 являются водородом, R18 обозначает в формуле (12) дополнительно остаток формулы (10) или остаток формулы (16)

Особый интерес представляет собой способ получения соединений формулы (6), где R18 имеет то же самое значение, что и в формуле (1). Предпочтительными остатками R7, R8, R9, R10, R17, R18 и R19 в способе получения соединений формулы (6) являются такие же остатки, как и в соединении формулы (1). Реакцию проводят предпочтительно в присутствии основания в диапазоне температур от 20 до 200oC, предпочтительно в пределах 50-150oC, и при небольшом давлении. Используемое в реакции основание, например гидроокись натрия, применяется в эквимолярном количестве относительно 4-гидроксиминдальной кислоты или же с небольшим избытком, составляющим предпочтительно 1-30%. При использовании солей 4-гидроксиминдальной кислоты, в частности натриевых солей, основание берется, соответственно, в меньших количествах. Реакция может проводиться в присутствии растворителя или без растворителя. Предпочтительно, однако, использовать растворитель, в частности воду. Особенно предпочтительным эпоксидом формулы (12) является окись этилена. В особо предпочтительном способе эпоксид применяется в избыточном молярном количестве по отношению к количеству используемой в реакции 4-гидроксиминдальной кислоты формулы (11), составляющем 1-80%, предпочтительно 10-60%. Замещенные в фенильном кольце миндальные кислоты формулы (11) известны из публикаций или могут быть получены способами, аналогичными описанным, например, в W.Bradley et al., J. Chem. Soc. 1956, 1622; в Европейских заявках 146269, 182507 (пример 1, стр.4) или же в выложенной заявке ФРГ 2944295. Эпоксиды формулы (12) известны из публикаций или легко могут быть получены путем окисления соответствующих олефинов надкислотой. Особенно предпочтительную окись этилена получают в крупномасштабном производстве. Также предпочтительным является алкилирование спирта или фенола R218OH эпихлоргидрином (1-хлор-2,3-эпоксипропан) с целью получения эпоксидов формулы

причем значения радикала -CH2OR218 cоответствуют диапазону значений R18. Само собой разумеется, что замещенные в фенильном кольце 4-гидроксиминдальные кислоты формулы (11) также могут при высокой температуре, предпочтительно в пределах 130-200oC, в расплаве или растворителе и при определенных условиях под неглубоким вакуумом преобразовываться сначала в соединения формулы (13)

Реакцию проводят предпочтительно в растворителе, как, например, уксусная кислота, пропионовая кислота или муравьиная кислота, в диапазоне температур от 50 до 130oC. Реакцию можно катализировать путем добавки кислоты, например соляной кислоты, серной кислоты или метансульфокислоты. Реакция может проводиться, например, таким же образом, как это описано в публикациях, приведенных в вводной части. В результате преобразования соединений формулы (13), проводимого либо с помощью эпоксидов формулы (12), либо галоэтанола (бромэтанола или хлорэтанола), получают аналогично тому, как это описано выше, 3-(2-гидроксиэтоксифенил)бензофуран-2-оны формулы (7).

Димеризация соединений формулы (14) с целью получения соединений формулы (1), где R6 обозначает группу формулы (3) [соединения формулы (15)] проводится путем окисления, например иодом, в основной среде с помощью органического растворителя при комнатной температуре. В качестве основания особенно пригоден этилат натрия, а в качестве раствора - этанол или диэтиловый эфир. Предлагаемые согласно изобретению соединения формулы (1) пригодны для использования в качестве стабилизаторов органических веществ, препятствующих их термическому, окислительному или индуцированному светом распаду. Примерами упомянутых органических материалов являются:
1. Полимеры моно- и диолефинов, например полипропилен, полиизобутилен, полибутен-1, поли-4-метилпентен-1, полиизопрен или полибутадиен, а также полимеры циклоолефинов, таких как, например, циклопентен или норборнен; далее, полиэтилен (который при определенных условиях может образовывать поперечные связи), например полиэтилен высокой плотности (HDPE), полиэтилен низкой плотности (LDPE), линейный полиэтилен низкой плотности (LLDPE), разветвленный полиэтилен низкой плотности (VLDPE). Полиолефины, то есть упомянутые выше полимеры моноолефинов, в частности полиэтилен и полипропилен, могут быть получены различными способами, например по следующей методике:
а) радикальная полимеризация (обычно при высоком давлении и высокой температуре);
б) с помощью катализатора, причем катализатор содержит обычно один или несколько металлов группы IVb, Vb, Vlb или VIII. Эти металлы имеют один или несколько лигандов, таких как окислы, галогениды, алкоголяты, сложные эфиры, простые эфиры, амины, алкилы, алкенилы и/или арилы, которые могут быть







1. Антиокислители
1.1. Алкилированные монофенолы, например 2,6-ди-трет.-бутил-4-метилфенол, 2-бутил-4,6-диметилфенол, 2,6-ди-трет.-бутил-4-этилфенол, 2,6-ди-трет. -бутил-4-н-бутилфенол, 2,6-ди-трет.-бутил-4-изобутилфенол, 2,6-дициклопентил-4-метилфенол, 2-(









2.1. 2-(2'-Гидроксифенил)-бензтриазолы, как, например, 2-(2'-гидрокси-5'-метилфенил)-бензтриазол, 2-(3', 5'-ди- трет. -бутил-2'-гидроксифенил)-бензтриазол, 2-(5'-трет. -бутил-2'- гидроксифенил)-бензтриазол, 2-[2'-гидрокси-5'-(1,1,3,3- тетраметилбутил) фенил]-бензтриазол, 2-(3',5'-ди-трет.-бутил-2'- гидроксифенил)-5-хлор-бензтриазол, 2-(3'-трет.-бутил-2'-гидрокси- 5'-метилфенил)-5-хлор-бензтриазол, 2-(3'-втор.-бутил-5'-трет.-бутил- 2'-гидроксифенил)-бензтриазол, 2-(2'-гидрокси-4'-октоксифенил)-бензтриазол, 2-(3 ', 5'-ди-трет. -амил-2'-гидроксифенил)-бензтриазол, 2-[3', 5'-бис (














Перемешиваемую в атмосфере азота суспензию, содержащую 154,7 г (0,75 моль) 2,4-ди-трет. -бутилфенола и 106,1 г (0,50 моль) 4-(2- гидроксиэтокси)-миндальной кислоты (соединение (201), пример 10, табл. 2) в 200 мл уксусной кислоты, насыщенной газом соляной кислоты, кипятят в течение 8 часов при нагревании с обратным холодильником. Затем уксусную кислоту отгоняют с помощью вакуумно-ротационного испарителя, остаток обрабатывают 15 мл (0,21 моль) ацетилхлорида и выдерживают в течение 20 мин при температуре 120oC. Реакционную смесь повторно концентрируют в вакуумно-ротационном испарителе, остаток обрабатывают 400 мл метанола и отстаивают при температуре около -8oC. Выпавшие кристаллы отфильтровывают, промывают 250 мл холодного метанола и сушат. В результате получают 176,3 г (83%) 3-[4-(2-ацетоксиэтокси)фенил] -5,7-ди-трет. -бутил-бензофуран-2-она, температура плавления (т.пл.) 93-96oC (соединение (101), табл. 1). После перекристаллизации из лигроина получают соединение (101) в двух кристаллических разновидностях. Разновидность А: Т. пл. 75-78oC, энтальпия плавления 62,4 Дж/г. Разновидность Б: Т.пл. 93-96oC, энтальпия плавления 118,2 Дж/г. Аналогично тому, как это описано в примере 1, из соответствующих фенолов (например, из 4-трет.- бутилфенола, 1-нафтола, 2-(гексадек-2-ил)-4-трет.-бутилфенола или 2,4- дициклогексилфенола, миндальных кислот (примеры 10 и 11)), растворителя карбоновой кислоты (например, муравьиной кислоты, уксусной кислоты или пропионовой кислоты) и хлорангидридов получают соединения (102), (103), (104), (112), (118), (123), (127), (128), (136), (137), (138), (139) и (140) (см. табл.1). Соединение (123) получают в муравьиной кислоте вместо уксусной кислоты и без добавки хлорангидрида кислоты. Пример 2: Получение 3-[4-(2-гидроксиэтокси)фенил]-5-метил-бензофуран- 2-она (соединение (119), табл. 1)
Суспензию, содержащую 8,5 г (40,0 моль) 4-(2-гидроксиэтокси)-миндальной кислоты (соединение (201), пример 10, табл.2) и 12,0 г (110 моль) п-крезола, выдерживают в атмосфере азота в течение 75 мин при температуре 180oC, причем образующуюся воду отгоняют. Затем избыточный п-крезол отгоняют с помощью вакуумно-ротационного испарителя. После хроматографии остатка на силикагеле в системе растворителей дихлорметан/этилацетат = 9:1 получают 6,6 г (58%) 3-[4- (2-гидроксиэтокси)фенил]-5-метил-бензофуран-2-она, представляющего собой смолу желтоватого цвета (соединение (119), табл.1). Аналогично примеру 2 из соответствующих фенолов и миндальных кислот (пример 12) получают соединения (113) и (114) (см. табл.1). Пример 3: Получение 5,7-ди-трет.-бутил-3-[4-(2-гидроксиэтокси)фенил]-бензофуран-2-она (соединение (105), табл.1)
а) Путем гидролиза 3-[4-(2- ацетоксиэтокси)фенил]-5,7-ди-трет.-бутил-бензофуран-2-она (пример 1, соединение (101), табл.1)
Раствор, содержащий 170 г (0,40 моль) 3-[4- (2-ацетоксиэтокси)фенил]-5,7-ди-трет. -бутил-бензофуран-2-она (пример 1) в 1000 мл метанола и 40 мл концентрированной соляной кислоты, кипятят в течение 15 часов при нагревании с обратным холодильником. Затем реакционную смесь путем отгонки приблизительно 600 мл метанола концентрируют и отстаивают в холодильном шкафу. Выпавшие кристаллы отфильтровывают, промывают 200 мл холодного метанола и сушат. В результате получают 137,5 г (90%) 5,7-ди-трет.-бутил-3-[4-(2- гидроксиэтокси)фенил]-бензофуран-2-она, т.пл. 132-135oC (соединение (105), табл.1). Аналогично примеру 3а из соединения (104) (пример 1) получают 5,7-ди-трет. -бутил-3-[3,5-диметил-4-(2- гидроксиэтокси)фенил] -бензофуран-2-он (соединение (106), табл.1). б) Путем гидроксиэтилирования 5,7-ди-трет.-бутил-3-(4-гидроксифенил)- бензофуран-2-она
В нагретый до 80oC раствор, содержащий 3,38 г (10,0 ммоль) 5,7-ди-трет. -бутил-3-(4-гидроксифенил)-бензофуран-2-она в 30 мл раствора 1 н. гидроокиси натрия, добавляют 1,0 мл (15 ммоль) 2- хлорэтанола. Затем реакционную смесь выдерживают еще в течение 2 часов при температуре 80o, после чего обрабатывают 50 мл 1 н. соляной кислоты, перемешивают в течение 1 часа, охлаждают и экстрагируют с помощью дихлорметана. Органические фазы промывают водой, соединяют, сушат над сульфатом натрия и концентрируют с помощью вакуумно-ротационного испарителя. После кристаллизации остатка из 8 мл этанола и 2 мл воды получают 2,34 г (61%) 5,7-ди-трет.-бутил-3-[4-(2- гидроксиэтокси)фенил] -бензофуран-2-она, т.пл. 132-135oC (соединение (105), табл.1). Используемый в качестве исходного материала 5,7-ди-трет.-бутил-3-(4-гидроксифенил)-бензофуран-2-он получают следующим образом. Смесь, содержащую 103,2 г (0,50 моль) 2,4-ди-трет.-бутилфенола и 102,4 г (0,55 моль) моногидрата 4-гидроксиминдальной кислоты в 100 мл уксусной кислоты кипятят в атмосфере азота в течение 24 часов при нагревании с обратным холодильником. Затем реакционную смесь разбавляют 140 мл 50%-ной водной уксусной кислоты, охлаждают и выпавший осадок отфильтровывают. Остаток промывают далее еще 200 мл 50%-ной водной уксусной кислоты, после чего сушат. В результате получают 95,9 г (57%) 5,7-ди-трет.-бутил-3-(4-гидроксифенил)-бензофуран-2-она, т.пл. 187-190oC. Пример 4: Получение 5,7-ди-трет. - бутил-3-[4-(2-стеароилоксиэтокси)фенил]-бензофуран-2-она (соединение (107), табл.1)
Суспензию, содержащую 11,4 г (30 ммоль) 5,7-ди-трет.- бутил-3-[4-(2-гидроксиэтокси)фенил] -бензофуран-2-она (соединение (105), пример 3) и 9,4 г (31 ммоль) хлорангидрида стеароила в 60 мл толуола, кипятят в течение 4 часов при нагревании с обратным холодильником. Затем реакционную смесь концентрируют с помощью вакуумно-ротационного испарителя и остаток перекристаллизовывают из метанола. В результате получают 17,3 г (89%) 5,7-ди-трет. -бутил-3-[4- (2-стеароилоксиэтокси)фенил] -бензофуран-2-она, т.пл. 54-60oC (соединение (107), табл.1). Аналогично примеру 4 из соответствующих бензофуранов и хлорангидридов кислот получают соединения (108), (121), (122), (124), (125), (133), (134) и (141). Пример 5: Получение производного сложного эфира терефталевой кислоты (соединение (111), табл.1)
Суспензию, содержащую 4,0 г (20 ммоль) сложного диметилового эфира терефталевой кислоты, 16,0 г (42 ммоль) 5,7-ди-трет.-бутил-3-[4- (2-гидроксиэтокси)фенил]-бензофуран-2-она (соединение (105), пример 3) и 300 мг окиси дибутилолова, перемешивают в атмосфере азота в течение 30 минут при температуре 170oC, причем образующийся метанол отгоняют. Затем температуру повышают до 240oC и продолжают перемешивать еще в течение 1,5 часов под неглубоким вакуумом (50 мбар). После удаления нагревательной бани в расплав через охладитель вливают 20 мл хлорбензола, а затем 75 мл изопропанола. Реакционную смесь с помощью льда/воды охлаждают. Выпавший продукт отфильтровывают, промывают холодным изопропанолом и сушат. В результате получают 15,6 г (87%) соединения (111) (табл.1), т.пл. 248-251oC. Аналогично примеру 5 из соответствующих сложных эфиров и бензофуранов получают соединения (109), (110), (115), (117), (120), (142), (143) и (144). Пример 6: Получение производного сложного эфира янтарной кислоты (соединение (116), табл. 1)
Суспензию, содержащую 7,65 г (20 ммоль) 5,7-ди-трет.-бутил-3-[4-(2-гидроксиэтокси)фенил] -бензофуран-2-она (соединение (105), пример 3), 1,0 г (10,0 ммоль) ангидрида янтарной кислоты и 1 каплю метансульфоновой кислоты, выдерживают в атмосфере азота в течение 30 минут при температуре 150oC. Затем продолжают перемешивать под неглубоким вакуумом (50 мбар) еще в течение 2 часов при температуре 150oC. Реакционную смесь охлаждают и хроматографируют на силикагеле в системе растворителей дихлорметан/гексан = 19:1. После кристаллизации чистых фракций из этанола получают 6,5 г (77%) соединения (116), (табл.1), т.пл. 145-163oC. Аналогично примеру 6, но исходя вместо ангидрида янтарной кислоты из тиодипропионовой кислоты, получают соединение (131). Пример 7: Получение 5,7-ди-трет. - бутил-3-[4-(2-метиламинокарбоксиэтокси)фенил]-бензофуран-2-она (соединение (129), табл.1)
Суспензию, содержащую 3,83 г (10,0 ммоль) 5,7-ди-трет.-бутил-3-[4-(2-гидроксиэтокси)фенил]-бензофуран-2-она (соединение (105), пример 3), 0,60 мл (10,0 ммоль) метилизоцианата и 100 мг окиси дибутилолова, перемешивают в течение 3 часов при комнатной температуре и затем концентрируют с помощью вакуумно-ротационного испарителя. После кристаллизации остатка из 10 мл этанола получают 2,3 г (52%) 5,7-ди-трет.-бутил-3-[4-(2- метиламинокар-боксиэтокси)фенил]-бензофуран-2-она, т.пл. 115-121oC (соединение (129), табл. 1). Аналогично примеру 7, но исходя вместо метилизоцианата из половины эквивалента гексаметилендиизоцианата, получают соединение (132). Пример 8: Получение соединение (130) (табл.1)
Суспензию, содержащую 11,5 г (30,0 ммоль) 5,7-ди-трет.-бутил- 3-[4-(2-гидроксиэтокси)фенил] -бензофуран-2-она (соединение (105), пример 3), 5,3 мл (90,0 ммоль) метилизоцианата и 200 мг окиси дибутилолова в 25 мл толуола, кипятят в течение 30 минут при нагревании с обратным холодильником. Затем реакционную смесь концентрируют с помощью вакуумно-ротационного испарителя. В результате двукратной перекристаллизации остатка каждый раз из 25 мл этанола получают 8,9 г (59%) соединения (130), т.пл. 142-144oC. Пример 9: Получение 3,3'-бис-{5,7-ди-трет.-бутил-3-[4-(2-гидроксиэтокси)фенил]- бензофуран-2-она} (соединение (135), табл.1)
В раствор этилата натрия, полученного путем добавки 0,69 г (30,0 ммоль) натрия в 40 мл абсолютного этанола, добавляют в атмосфере азота 11,48 г (50 ммоль) 5,7-ди-трет. -бутил-3-[4-(2-гидроксиэтокси)фенил] -бензофуран-2-она (соединение (105), пример 3). Затем при комнатной температуре в течение приблизительно 10 минут добавляют по каплям раствор, содержащий 3,8 г (15,0 ммоль) йода в 40 мл диэтилэфира. Реакционную смесь продолжают перемешивать еще в течение 30 минут, после чего разбавляют 200 мл воды и трижды экстрагируют каждый раз 50 мл диэтилэфира. Органические фазы отделяют, промывают водой, соединяют, сушат над сульфатом магния и затем концентрируют с помощью вакуумно-ротационного испарителя. В результате кристаллизации остатка из лигроина/дихлорметана получают 10,3 г (90%) 3,3'-бис-{5,7-ди-трет.- бутил-3-[4-(2-гидроксиэтокси)фенил]-бензофуран-2-она}, т.пл. 212- 218oC (соединение (135), табл.1). Структурное сокращение формул в табл. 1 и 2, как, например,

означает

Пример 10: Получение 4-(2-гидроксиэтокси)миндальной кислоты (соединение (201), табл.2 в конце описания). В автоклав емкостью 6,3 л помещают 1040,8 г (5,00 моль) моногидрата натриевой соли 4-гидроксиминдальной кислоты, 10,0 г (0,25 моль) гидроокиси натрия и 1000 мл воды. Автоклав промывают азотом, после чего помещают туда 330,4 г (7,50 моль) окиси этилена. Содержимое автоклава при перемешивании в течение 2 часов медленно нагревают до 95oC и при этой температуре продолжают перемешивать еще в течение 2 часов. Еще теплую реакционную смесь переливают, затем подкисляют при 95oC 540 мл (приблизительно 5,5 моль) 32%-ной соляной кислотой и медленно охлаждают до примерно +10oC до выпадения кристаллов. Выпавший продукт отфильтровывают, промывают 1000 мл холодной воды и сушат. В результате получают 948 г (89%) 4-(2-гидроксиэтокси)миндальной кислоты. Т. пл. 162-164oC (соединение (201), табл.2). Аналогично примеру 10, но используя в качестве исходной натриевую соль 3,5-диметил-4-гидроксиминдальной кислоты (пример 13), получают соединение (202) (табл. 2). Если вместо окиси этилена применяют окись пропилена или окись циклогексена, то получают соединения (206) и (207) (табл.2). Пример 11: Получение 4-(2- гидроксиэтокси)-3-метилминдальной кислоты (соединение (203), табл.2)
В нагретый до 70oC раствор, содержащий 18,2 г (100 ммоль) 4-гидрокси-3-метилминдальной кислоты (пример 13), 4,0 г (100 ммоль) гидроокиси натрия и 13,4 мл (200 ммоль) 2-хлорэтанола в 60 мл воды, добавляют по каплям в течение часа раствор, содержащий 8,0 г (200 ммоль) гидроокиси натрия в 15 мл воды. Затем еще раз проводят добавку 6,7 мл (100 ммоль) 2-хлорэтанола и 4,0 г (100 ммоль) гидроокиси натрия в 10 мл воды. Через 15 минут реакционную смесь подкисляют концентрированной соляной кислотой и дважды экстрагируют с помощью этилацетата. Органические фазы промывают водой, соединяют, сушат над сульфатом магния и концентрируют с помощью вакуумно-ротационного испарителя. В результате получают 23,0 г (~100%) 4-(2-гидроксиэтокси)-3-метилминдальной кислоты в виде смолы желтоватого цвета (соединение (203), табл.2). Аналогично примеру 11, но при использовании в качестве исходной 4-гидрокси-3-метоксиминдальной кислоты (Beilstein, 10, IV, 2034), получают соединение (208) (табл.2). Пример 12: Получение 4-(2- гидрокси-3-феноксипропокси)миндальной кислоты (соединение (204), табл.2)
В суспензию, содержащую 10,4 г (50 ммоль) моногидрата натриевой соли 4-гидроксиминдальной кислоты и 300 мг (5,0 ммоль) гидроокиси калия в 25 мл метанола, добавляют 7,5 г (50 ммоль) 2,3- эпоксипропилфенилэфира (фенилглицидэфир) и кипятят в течение 8 часов при нагревании с обратным холодильником. Затем гомогенную реакционную смесь разбавляют 300 мл воды, подкисляют 25 мл концентрированной соляной кислоты и трижды экстрагируют с помощью дихлорметана. Органические фазы промывают водой, соединяют, сушат над сульфатом магния и концентрируют с помощью вакуумно-ротационного испарителя. В результате получают 8,4 г (53%) 4-(2-гидрокси-3-феноксипропокси)миндальной кислоты в виде смолы желтоватого цвета (соединение (204), табл.2). Аналогично примеру 12, но исходя вместо 2,3-эпоксипропилфенилэфира из окиси 1,2-бутилена, получают соединение (205) (табл.2). Пример 13: Получение замещенных 4-гидроксиминдальных кислот
0,30 моль исходного фенола (например, 2,6-диметилфенола, о- крезола, 2-трет. -бутилфенола или 2-изопропил-3-метилфенола) растворяют в 150 мл 2 н. раствора гидроокиси натрия в атмосфере азота. После охлаждения до +5oC добавляют 4,8 г (0,12 моль) гидроокиси натрия и 13,3 мл (0,12 моль) 50%-ной водной глиоксиловой кислоты и реакционную смесь перемешивают в течение 4 часов при комнатной температуре. Затем дважды через каждые 4 часа добавляют еще 0,12 моль гидроокиси натрия и глиоксиловой кислоты (всего 0,36 моль). Реакционную смесь продолжают далее перемешивать еще в течение 12 часов, затем нейтрализуют концентрированной соляной кислотой и промывают дважды порциями по 75 мл петролейным эфиром. Далее водную фазу подкисляют концентрированной соляной кислотой и экстрагируют несколько раз простым эфиром. Органические фазы соединяют, сушат над сульфатом магния и концентрируют с помощью вакуумно-ротационного испарителя. Таким способом получают следующие препараты: 3,5-диметил-4-гидроксиминдальную кислоту, т.пл. 132-135oC (85%); 4-гидрокси-3-метилминдальную кислоту, т. пл. 115-120oC, выход 55%; 4-гидрокси-3-трет. -бутилминдальную кислоту, т.пл. 156-158oC, выход 26%; и 3-изопропил-4-гидрокси-2-метилминдальную кислоту, т.пл. 114-119oC, выход 20%. Пример 14: Стабилизация полипропилена многократной экструзией
1,3 кг полипропиленового порошка (Profax 6501), предварительно стабилизированного 0,025% Irganox




100 ч. полиэтиленового порошка Lupolen

Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14, Рисунок 15, Рисунок 16, Рисунок 17, Рисунок 18, Рисунок 19, Рисунок 20, Рисунок 21, Рисунок 22, Рисунок 23, Рисунок 24, Рисунок 25, Рисунок 26, Рисунок 27, Рисунок 28, Рисунок 29, Рисунок 30
Похожие патенты:
Полимерная композиция // 2130039
Изобретение относится к полимерным композициям на основе поливинилхлорида для получения пленочных материалов и искусственной кожи
Поливинилхлоридная композиция // 2108352
Изобретение относится к композициям на основе поливинилхлорида для литья под давлением и может быть использовано в качестве пластика для изготовления низа обуви
Изобретение относится к термопластичной полимерной композиции, содержащей крахмал, по крайней мере один синтетический термопластичный полимер и пластификатор, в которой пластификатор представляет собой по крайней мере одно соединение, выбираемое из группы, состоящей из: a) полиолов, содержащих 1-20 повторяющихся гидроксилированных звеньев, каждое из которых содержит от 2 до 6 атомов углерода, при условии, что когда полиол содержит одно повторяющееся звено, оно содержит по крайней мере 4 атома углерода, за исключением сорбита; b) простых эфиров, тиоэфиров, неорганических и органических сложных эфиров, ацеталей и аминопроизводных полиолов, содержащих 1-20 повторяющихся гидроксилированных звеньев, каждое из которых содержит от 2 до 6 атомов углерода, за исключением эфиров уксусной кислоты и глицерина, триэтилцитрата и трибутилцитрата; c) продуктов реакции полиола, содержащего от 1 до 20 повторяющихся гидроксилированных звеньев, каждое из которых содержит от 2 до 6 атомов углерода, с удлинителями цепи; d) продуктов окисления полиолов, содержащих от 1 до 20 повторяющихся гидроксилированных звеньев, каждое из которых содержит от 2 до 6 атомов углерода, содержащих по крайней мере одну альдегидную или карбоксильную функциональную группу, или их смесей
Изобретение относится к составам, применяющимся в легкой промышленности, в частности к композициям на основе полиуретанов, предназначенным для использования в кожевенной промышленности и на предприятиях бытового обслуживания для крашения натуральных кож, реставрации и ретуширования кожаной обуви и кожи для галантерейных изделий
Полимерная композиция // 2073038
Изобретение относится к получению прозрачного полимерного материала для изготовления защитной оболочки, обеспечивающей фиксацию эластичного шнурового изделия (взрывной элемент) к внутренней поверхности остекления, подлежащего разрушению
Полимерная композиция // 2045553
Изобретение относится к полимерным композициям и может быть использовано в качестве пластиката для изготовления листовых материалов
Полимерная композиция // 2028333
Изобретение относится к сосудосуживающим /(бензодиоксан, бензофуран и бензопиран)-алкиламино/-алкил-замещенным гуанидинам формулы I, их фармацевтически приемлемым солям, или их стереохимическим изомерам, где X = O, CH2 или прямая связь; R1 = H, C1-C4 алкил, R2 = H, C1-C6 алкил, C3-C6 алкенил, C3-C6 алкинил, R3 = H, C1-C4 алкил; или R2 и R1 взятые вместе, могут образовывать двухвалентный радикал формулы -/CH2/m-, где m = 4 или 5; или R1 и R2, взятые вместе, могут образовывать двухвалентный радикал формулы -CH=CH- или формулы -/CH2/n-, где n = 2, 3 или 4; или R3 может обозначать связь, когда R1 и R2, взятые вместе, образуют двухвалентный радикал формулы -CH=CH-CH= -, -CH= CH-N= или -CH=N-CH=; где один или два водородных атома замещены атомом галогена, C1-C6 алкоксигруппой, C1-C6 алкилом, CN, NH, моно- или ди(C1-C6 алкил) аминогруппой, аминокарбонилом, C1-C6 алкиламинокарбониламиногруппой, R4-H или C1-C6-алкил; Alk1 обозначает двухвалентный C1-C3-алкандиильный радикал, A обозначает двухвалетный радикал формулы /a/, /b/, /c/, /d/, /e/, где каждый R5=H или C1-C4-алкил, где каждый R6=H или C1-C4-алкил, Alk2 обозначает C2-C15-алкандиил или C5-C7-циклоалкандиил, и каждый "р" обозначает 0, 1, 2, R7 и R8 каждый независимо является H, атомом галогена, C1-C6 алкилом, гидроксилом, C1-C6 алкилоксикарбонилом, C1-C6 алкоксигруппой, цианогруппой, амино C1-C6 алкилом, карбоксилом, нитро- или аминогруппой, аминокарбонилом, C1-C6 алкилкарбониламиногруппой или моно- или ди-(C1-C6)алкиламиногруппой, при условии, что исключается /2-/ (2,3-дигидро-1,4-бензодиоксин-2-ил)-метил/-амино/-этил-гуанидин
Изобретение относится к новым производным N-(3-гидрокси-4-пиперидинил) (дигидро-2Н-бензопиран или дигидробензодиоксин) карбоксамида, обладающих ценными фармацевтическими свойствами, а именно активностью по стимулированию желудочно-кишечной перистальтики
Изобретение относится к новой сульфомочевине, предназначенной для лечения рака
Изобретение относится к гетерополициклическим алканоильным производным, которые обладают биоцидным действием, более конкретно к аминоалканольным производным, молекулы которых содержат гетерополициклическую кольцевую систему, к способам их синтеза, к их новым полупродуктам, к их содержащим фармацевтическим композициям и к их использованию в качестве биоцидных агентов, в частности противоопухолевых средств
Изобретение относится к гетероциклическим соединениям, в частности к получению ароилбензофуранили ароилбензотиофенуксусной кислоты формулы @ где AR - незамещенный фенил или фенил, замещенный группой галоид, низший алкил C<SB POS="POST">1</SB>-C<SB POS="POST">6</SB> низший тиоалкил C<SB POS="POST">1</SB>-C<SB POS="POST">6</SB> X - O или S, или ее фармацевтически пригодных солей, которая может найти применение в медицине
Изобретение относится к гетероциклическим соединениям, в частности к получению производных дигидробензофуран-или хроман-карбоксамидов ф-лы @ где R<SB POS="POST">1</SB> - H или метил N = 1 или 2 R<SB POS="POST">2</SB> - этил, аллил циклопропилметил или циклогексенилметилгруппа X-H или аминогруппа Y-H или CL, циклопропилметилсульфонил, метилсульфамоил или этилсульфонил, при условии, что Y может быть только циклопропилметилсульфонилом, когда R<SB POS="POST">2</SB> - этил, а N = 1, или Y может быть только H или CL, или циклопропилметилсульфонилом, когда R<SB POS="POST">2</SB> - этил, а N = 2, или, когда R<SB POS="POST">2</SB> - аллил, а N = 1 или 2, или их аддитивных солей фармакологически совместимых кислот, которые обладают нейтролептическим действием и могут быть использованы в медицине
Изобретение относится к гетероциклическим соединениям, в частности к получению производных тиазолидиндиона ф-лы @ где N-0 или 1 X - O, S R<SB POS="POST">1</SB> - метил, метоксиметил, бензил, циклогексил, циклогексилметил, о-фторбензил, о-метоксибензил, м-метоксибензил, п-метоксибензил, о-гидроксибензил или п-гидроксибензил и R<SB POS="POST">2</SB>, R<SB POS="POST">3</SB> и R<SB POS="POST">4</SB> - H, или R<SB POS="POST">1</SB> - циклогексил, R<SB POS="POST">2</SB> - метил и R<SB POS="POST">3</SB> и R<SB POS="POST">4</SB> - H, или R<SB POS="POST">1</SB> + R<SB POS="POST">2</SB> - пентаметилен и R<SB POS="POST">3</SB> и R<SB POS="POST">4</SB> - H, или R<SB POS="POST">1</SB> и R<SB POS="POST">2</SB> - H и R<SB POS="POST">3</SB> + R<SB POS="POST">4</SB> - пентаметилен, или их солей с щелочными металлами, которые обладают гипогликемическими свойствами
Рабочее колесо центробежного насоса // 1555540
Изобретение относится к конструкциям лопаток рабочих колес центробежных насосов и направлено на повышение КПД путем уменьшения вихреобразования в межлопаточных каналах 3
Изобретение относится к новому способу получения 2,2-диметил-5-(2,5-диметилфенокси)-пентановой кислоты формулы (I) O COOH (I) Это соединение используется для регулирования уровня липидов в крови