Космический аппарат со стабилизацией вращением
Изобретение относится к космической технике и может быть использовано в космических аппаратах, стабилизируемых вращением. Согласно изобретению космический аппарат содержит корпус, датчик угловой скорости относительно оси вращения аппарата, солнечные батареи, размещенные симметрично относительно этой оси и снабженные токосборными силовыми контурами. Контуры объединены с группами последовательно соединенных фотоэлектрических преобразователей батарей с обеспечением согласного направления их токов относительно корпуса. Экранированные от внешнего магнитного поля токонесущие провода подключены к токосборным контурам посредством резисторов. Неэкранированные токонесущие провода подключены параллельно экранированным проводам и к токосборным контурам посредством вентилей. Управляющие входы вентилей связаны с выходом датчика угловой скорости. При работе обеспечивается поддержание угловой скорости вращения космического аппарата в заданных пределах в результате взаимодействия токов солнечных батарей и магнитного поля Земли. Изобретение обеспечивает поддержание угловой скорости в заданных пределах вне зависимости от величины токов в солнечных батареях. 2 ил.
Изобретение относится в космической технике и может быть использовано в космических аппаратах, стабилизируемых вращением.
Известен космический аппарат со стабилизацией вращением, содержащий корпус аппарата с закрепленным на нем солнечными батареями, параболическими и рупорными антеннами [1]. Недостатком указанного космического аппарата является необходимость регулирования скорости вращения и коррекции направления продольной оси аппарата вследствие того, что при длительном времени работы величина и направление вектора кинетического момента, а следовательно, и скорость вращения аппарата значительно изменяется под действием различных возмущающих факторов (возмущение от светового давления солнечных лучей, гравитационных полей, движущихся масс внутри аппарата, неточностей в изготовлении системы ориентации и стабилизации). Известен также космический аппарат со стабилизацией вращением, содержащий корпус аппарата, развертываемые солнечные батареи, размещенные симметрично относительно оси максимального момента инерции аппарата и снабженные токосборными силовыми контурами, объединенными с группами последовательно соединенных фотоэлектрических преобразователей батарей, а также подключенными к токосборным контурам экранированными от внешнего магнитного поля токонесущими проводами, при этом токосборные силовые контуры и фотоэлектрические преобразователи объединены с обеспечением согласного направления их токов относительно корпуса аппарата [2]. Недостатком указанного космического аппарата является необходимость регулирования скорости собственного вращения аппарата при превышении ее оптимального значения, особенно при работе батарей в режимах перегрузок либо короткого замыкания, когда момент силы Ампера, приложенной к аппарату в результате взаимодействия токов солнечных батарей с магнитным полем Земли, будет значительно превышать действие тормозящих факторов. Поддерживание постоянной по величине угловой скорости вращения имеет существенное значение, т.к. вследствие затухания собственного вращения аппарат становится менее устойчивым по отношению к одним и тем же внешним возмущающим моментам [3], а при превышении ее оптимального значения возникает необходимость усиления элементов механических узлов развертываемых конструкций вследствие возможности их деформации [4], усложняется управление ориентацией антенных полей [5]. Известно также использование в космической технике датчиков угловых скоростей вращения относительно выбранной оси [6], в солнечных батареях добавочных резисторов (величиной десятые доли - единицы Ом), подключаемых к токонесущим проводам для съема экспериментальной информации о работе батарей [7]. Целью предлагаемого решения является обеспечение поддержания угловой скорости собственного вращения аппарата в заданных пределах путем управления компенсирующим на влияние возмущающих факторов воздействием, являющимся результатом взаимодействия токов солнечных батарей и магнитного поля Земли. Поставленная цель достигается тем, что космический аппарат, содержащий корпус, развертываемые солнечные батареи, размещенные симметрично относительно оси максимального момента инерции аппарата и снабженные токосборными силовыми контурами, объединенными с группами последовательно соединенных фотоэлектрических преобразователей батарей с обеспечением согласного направления их токов относительно корпуса аппарата, экранированными от внешнего магнитного поля токонесущими проводами, подключенными к токосборным контурам, неэкранированными токонесущими проводами, подключенными параллельно экранированным токонесущим проводам, снабжен датчиком угловой скорости относительно оси вращения аппарата, а указанные экранированные токонесущие провода подключены к токосборным контурам посредством резисторов, при этом указанные неэкранированные токонесущие провода подключены к токосборным силовым контурам посредством вентилей, управляющие входы которых имеют связь с выходом указанного датчика угловой скорости. На фиг. 1 представлен чертеж предлагаемого космического аппарата, состоящего из корпуса 1, датчика 2 угловой скорости относительно оси вращения, развертываемых солнечных батарей 3, размещенных симметрично относительно оси максимального момента инерции аппарата и снабженных токосборными силовыми контурами 4, объединенными с группами последовательно соединенных фотоэлектрических преобразователей 5 батарей 3 с обеспечением согласного направления их токов относительно корпуса 1 аппарат, экранированными от внешнего магнитного поля токонесущими проводами 6, подключенными к токосборным контурам 4 посредством резисторов 7, при этом параллельно экранированным токонесущим проводам 6 к токосборным силовым контурам 4 подключены неэкранированные токонесущие провода 8 посредством вентилей 9, управляющие входы которых имеют связь с выходом датчика 2 угловой скорости. При движении космического аппарата со стабилизацией вращением на орбите искусственного спутника Земли, с учетом того, что аппараты указанного вида используются на круговой орбите с наклонением 0...3o и их ось вращения из соображения устойчивости движения ориентируется перпендикулярно плоскости орбиты [3] , магнитное поле Земли по закону Ампера будет воздействовать на его солнечные батареи, в которых токи в группах последовательно соединенных фотоэлектрических преобразователей и в токосборных силовых контурах, объединяющих группы фотоэлектрических преобразователей, имеют согласное направление относительно корпуса аппарата, а параллельно соединенные экранированные и неэкранированные токонесущие провода подключены к токосборным контурам соответственно через резисторы и вентили, причем управляющие входы вентилей имеют связь с выходом датчика угловой скорости, с силой




M = nFl = nJl2B(1-k),
где n - количество развертываемых солнечных батарей,
а величина


где J момент инерции аппарата. Обеспечив по сигналам с датчика угловой скорости запирание вентилей при условии






При превышении текущей угловой скорости вращения аппарата номинального значения (














1. Современное состояние и перспективы развития космического вооружения США. - Л.: ВИКИ им А.Ф. Можайского, 1986, с. 91- 93. 2. Заявка 93057506/11, 20.10.95. 3. Попов В. Системы ориентации и стабилизации космических аппаратов. - М.: Машиностроение, 1986, с. 17-41. 4. Грилихес В. и др. Солнечная энергия и космические полеты. - М.: Наука, 1984, с. 131-140. 5. Зарубежные космические средства / Справочник. - М.: МО, с. 205-206. УДК 629.78 (104). 6. Селезнев В. Навигационные устройства. - М.: Машиностроение, 1974, с. 559. 7. Колтун М. Солнечные элементы. - М.: Наука, 1987, с. 98-104.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2