Способ получения композитных полимерных первапорационных мембран
Способ получения композитных полимерных первапорационных мембран включает получение асимметричной микропористой подложки с последующим формованием на скин-слое подложки диффузионного поимерного слоя. При этом асимметричную микропористую подложку получают мокрым формованием 8 - 15 мас.%-ных растворов ароматического полиамида (формулу звена см. в п.1 формулы изобретения) с молекулярной массой 40 - 120 тыс.Д при нанесении раствора полиамида в апротонном полярном растворителе слоем толщиной 200 - 300 мкм на гладкую поверхность инертного материала с последующим погружением в осадительную ванну. На поверхности скин-слоя полученной подложки формируют диффузионный слой из поли-N,N,N,N-триметилметакрилоилоксиэтил аммониевой соли со степенью кватернизации 98 - 100% и молекулярной массой 1 - 30 млн. D при нанесении 0,05 - 0,3 мас.%-ного водного раствора полимера на скин-слой микропористой подложки с последующей сушкой. Созданные первапорационные мембраны сочетают высокую селективность и производительность при отделении низших алифатических спиртов от эфиров и углеводородов в широком интервале соотношений компонентов. 8 табл.
Изобретение относится к области химии высокомолекулярных соединений, точнее, к способу получения композитных полимерных первапорационных мембран, представляющих собой многослойное, содержащее по крайней мере два слоя изделие. Такие мембраны могут быть использованы в химической, нефтехимической и иных отраслях промышленности, где необходимо разделять смеси органических жидкостей, содержащие алифатические спирты, простые и сложные эфиры, углеводороды (алифатические, олефины, ароматические, циклоалифатические и другие).
Метод первапорации на полимерных мембранах позволяет разделять смеси веществ, имеющих близкие температуры кипения, образующих азеотропы, претерпевающих химические превращения при нагревании до температур, близких к температурам кипения. Например, эта задача возникает при выделении из реакционной смеси таких целевых продуктов, как метил-трет.бутилового или метил-трет.амилового эфиров. Эти эфиры нашли широкое использование в качестве добавок к бензину, повышающих его октановое число и заменяющих такое экологически опасное вещество, как тетраэтилсвинец. Синтез метил-трет. бутилового эфира при непосредственном взаимодействии избытка метанола с изобутиленом в присутствии катализатора проходит, как правило, по схеме






где M - металл, например Na. Отделение метанола из его смесей с диметилкарбонатом или метилтрет.бутиловым эфиром вели при 40 - 120oC, предпочтительно при 70oC, при остаточном давлении под мембраной 0,5 - 50 мм рт.ст., предпочтительно при 5 - 20 мм рт. ст. Содержание метанола в исходной смеси 13,3 - 83,5%. Пермеат содержал 90 - 99% метанола. Селективность разделения 5,4 - 380,8. Проницаемость мембран 0,01 - 0,84 кг/кв.м в час. Это соответствует продуктивность 2 - 113 кг/кв.м Massyuki Nakatani, Makoto Matsuo, Kanji Nakafawa (4. Заявка Великобритании N 224229, МПК : 5 C 07 C 29/76, опубл. 02 октября 1991) методом первапорации выделяли низшие алифатические спирты из смесей с их эфирами с C2 - C8 с использованием однослойной первапорационной полимерной мембраны из ароматического полиимида с формулой звена:

где R двухвалентный ароматический радикал, содержащий по крайней мере два бензольных кольца;
X - выбран из группы, включающей - -S-, -SO2-, -CO-, -O-, -C(CH3)2-, -CH2-, -C(CF3)2-. Мембраны формуют из растворов полимеров в фенольных (фенол, 2-хлорфенол, 4-хлорфенол, 4-бромфенол, крезол) растворителях "мокрым" способом с поликонденсацией и термической или химической имидизацией и термообработкой. Асимметричная мембрана в соответствии с описанным изобретением имеет плотный диффузионный слой толщиной 0.001 - 5 мкм и микропористый подслой из того же полимера, связанный с диффузионным, толщиной 10 - 2000 мкм. Разделяемые смеси содержали метанол и метил-трет.бутиловый эфир с концентрацией последнего 53.2 - 90.5 масс.%. Пермеат содержал метанол с концентрацией до 99.7%. Процесс проводят при температурах 0 - 120oC, преимущественно при 20 - 100oC и остаточном давлении с другой стороны мембраны до 100 - 200 мм рт.ст. В зависимости от исходного состава разделяемой смеси проницаемость таких мембран изменялась от 0.32 до 6.54 кг/кв.м в час, селективность - 52 - 1870, продуктивность - 159 - 1460 кг/кв.м в час. Mordechai Pasternak, Craig R. Bartels, John Reale, Jr., Vatsal M.Shah предложили способ мембранного разделения органических жидкостей на композитных мембранах (5. Пат. США N 4960519, МПК : 5 B 01 D 61/36, опубл. 02 октября 1990), выполненных с подложкой из полиакрилонитрила с ММ 5000 - 100000 Д, преимущественно 20000 - 60000 Д с покровным диффузионным слоем из поливинилового спирта с ММ 20000 - 200000 Д, предпочтительно 96000 - 115000 Д или из полиакриловой кислоты с ММ 90000 - 300000 Д, предпочтительно 90000 - 250000 Д. Массовое отношение ПВС : ПАК = 0,1 - 10 : 1, преимущественно 1 : 1. Толщина подложки составляла 40 - 80 мкм, а размер пор на рабочей поверхности подложки не более 500 ангстрем, предпочтительно 200 ангстрем. Толщина диффузионного слоя 1 - 10 мкм, предпочтительно 2 мкм. Процесс разделения ведут при остаточном давлении 1 - 20 мм рт.ст., предпочтительно 1 - 10 мм рт. ст. , оптимально 2 мм рт.ст., при 40 - 120oC. При разделении смесей метанол - метил-трет.бутиловый эфир пермеат содержит дол 90-99,9 мас.% метанола. Первапорационные мембраны, полученные в соответствии с известным изобретением характеризуются проницаемостью 0,03 - 2,26 кг/кв.м час, селективностью - 4,5 - 53,5. Продуктивность составляла 0,6 - 11,3 кг/кв.м час. Binay K. Dutta, Subhas K.Sikdar (6. Пат. США N 5066403, МПК N 5 B 01 D 61/36, опубл. 19 ноября 1991) предложили для разделения жидкостей с близкими температурами кипения и азеотропов первапорацию на композитных мембранах. Мембраны содержали микропористую подложку из политетрафторэтилена с диффузионным слоем толщиной 1 - 20 мкм, выполненным из полимерной перфторсульфоновой кислоты, протоны кислотных групп в которой замещены на ионы металлов VI B и VIII B групп Периодической системы, в частности, на ионы Na+, Cs+, Ag+. Толщина диффузионного слоя около 2 мкм. Смесь метанола и циклогексана (30,7 мол.% метанола) разделяли при 45oC. Пермеат содержат до 97% метанола. Проницаемость 2,16 - 2,87 кг/кв.м в час. Селективность 14,8 - 24,3. Продуктивность равна 42,5 - 52,5 кг/кв.м час. Wen-Jang Chen, Charles R.Martin (7. Wen-Jang Chen, Charles R. Martin // Journal of Membrane Science, 1995. - 104. - P.101-108) предложили отделять метанол из его смесей с метил-трет.бутиловым эфиром первапорацией на композитных мембранах, диффузионный слой которых толщиной 10 - 15 мкм выполнен из полистиролсулфоната в Na+ или Mg++ форме. Подложка изготовлена из микропористого фильтра на основе окиси алюминия. Концентрация метанола в исходной смеси 5 - 14,3 мас.%, а в пермеате - до 99,9%. Разделение вели при 25oC. Проницаемости не превышала 0,0011 - 0,063 кг/кв.м в час. Селективность составляла 1200 - 35000. Продуктивность не превышала 30 - 575 кг/кв.м вчас. Недостатками всех известных аналогов и наиболее близкого из них, в качестве которого выбрано последнее из перечисленных решений, являются относительно малые значения продуктивности известных, мембран, как асимметричных, так и композитных, используемых для разделения смесей органических жидкостей методом первапорации. Задачей предлагаемого изобретения являлось создание первапорационных мембран, сочетающих высокую селективность и производительность при отделении низших алифатических спиртов от эфиров и углеводородов в широком интервале соотношений компонентов. Эта задача была решена способом получения двухслойных композитных полимерных первапорационных мембран. Заявляемый способ реализуется следующей совокупностью существенных признаков:
1. Композитную мембрану получают формованием микропористой подложки (ультрафильтрационной мембраны асимметричной структуры) из 8 - 15 мас.% растворов ароматического полиамидоимида с последующим формированием на поверхности скин-слоя подложки полимерного диффузионного слоя. 2. В качестве ароматического полиамидоимида используют полимер с формулой звена







а также сополимеры ПАИ-1, содержащие от 2 до 50% мономерных звеньев ПАИ-3, ПАИ-4, ПАИ-5, ПАИ-6, ММ всех ПАИ от 40 до 120 тыс. Д. 3. Раствор полиамидоимида в апротонном полярном растворителе наносят слоем толщиной 200 - 300 мкм на гладкую поверхность инертного материала и погружают в осадительную ванну, состоящую из воды или водных растворов алифатических спиртов с C2 - C3, сформованную подложку отделяют, промывают водой и сушат. 4. Диффузионный слой формируют из поли-N,N,N,N-триметилметакрилоилоксиэтиламмониевой соли, выбранной из ряда, содержащего метилсульфат, бензолсульфат, сульфат, со степенью кватернизации 98 - 100% и ММ от 1 до 30 млн.Д. 5. Диффузионный слой формируют из 0,05 - 0,3 мас.% водного раствора указанного полимера нанесением его на скин - слой микропористой подложки и сушкой. Отличительными от признаков способа-прототипа являются признаки NN 2-5. Полиамидоимид с формулой звена:



был известен ранее (8. Авторское свидетельство СССР N 501504, МПК : 2 H 05 K 3/10, опублик. 30 января 1976)), но предназначался для использования в качестве термостойкого полимерного растворимого материала при изоляции электронных схем. В качестве растворимого, термостойкого, гидролитически стабильного полимерного материала описан также аналог (9. Авторское свидетельство СССР N 763376, МПК : 3 C 08 G 73/14, опублик. 15 сентября 1980) :



Полиамидоимиды со структурой

использовались ранее только для производства газоразделительных мембран (10. Европейская патентная заявка N 0409265 А2, МПК : 5 B 01 D 69/12, приоритет от 20.07.1989, заявка СССР N 4722296, дата опублик. 23 января 1991). Для получения газоразделительных мембран предложено также использовать асимметричные мембраны на основе полиамидоимидов (11. Выложенная заявка ФРГ N 4232496, А1, МПК : 5 C 08 G 73/14, выкладка 31 марта 1994) общей формулы -A-X-A-Z-, где A - амидогруппа или амидная связь, Z - двухвалентный органический радикал, X - двухвалентный органический остаток, который содержит один или два имидных цикла, атомы азота которых связаны с фенильными остатками, например,

X = -CH2-, -C(CH3)2-, -C(CF3)2-, -O-, -S-, -SO2-, -SO-, C-C связь и др. Известно также, что водорастворимые катионные полимеры на основе высокомолекулярных поли-N,N,N,N- триметилметакрилоилоксиэтиламмониевых солей использовались ранее только в качестве флокулянтов, эффективных при водоочистке, очистке сточных под различного происхождения, а также в качестве интенсификаторов бумажного производства и загустителей (12. Пат. РФ N 178420, МПК : 5 C 08 F 121/34, вступил в действие с 22 сентября 1993). С очевидностью из известных структур используемых в заявляемом изобретении полимеров, а также из известных данных о их функциях не вытекают новые функции новых первапорационных мембран, получаемых заявленным способом, заключающиеся в обеспечении высокой эффективности и продуктивности двухслойных композитных первапорационных мембран, созданных на их основе и предназначенных для разделения органических жидкостей. В соответствии с заявленным изобретением двухслойные композитные первапорационные мембраны получают в две стадии. На первой стадии 8-15% раствор в апротонном полярном растворителе полиамидоимида, полученного по известному способу (8, 9) со структурой мономерного звена







а также сополимеры ПАИ-1, содержащие от 2 до 40% мономерных звеньев ПАИ-3, ПАИ-4, ПАИ-5, ПАИ-6 (все ПАИ имеют величину приведенной вязкости 1,3 - 2,5 дл/г для 0,5 мас.% раствора в N-метил-2-пирролидоне при 20oC) наносят слоем толщиной 200 - 600 мкм на гладкую инертную поверхность (например, на стеклянную пластину), выдерживают 5 - 20 мин, при комнатной температуре на воздухе и погружают в осадительную ванну при комнатной температуре на 2 - 7 минут. В качестве осадительной ванны используют дистиллированную воду, водорастворимые низшие алифатические спирты или их смеси. Отделившуюся от стеклянной пластины подложку промывают водой и сушат на воздухе при температуре 50 - 150oC. Получают подложку толщиной 80 - 150 мкм в виде ультрафильрационной мембраны асимметричной структуры, имеющей средний размер диаметра пор в скин-слое 50 - 200


с ММ 60000 в N-метилпирролидоне, таким образом толщина слоя нанесенного раствора составляет около 250 мкм. После выдержки в течение 5 минут при комнатной температуре на воздухе пластину со слоем полимерного раствора погружают при комнатной температуре в водную осадительную ванну емкостью 1 литр. Через 5 минут сформировавшаяся микропористая мембрана отделилась от стеклянной пластины. Мембрану промывают водой, сушат 2 часа на воздухе, а затем выдерживают при 150oC в течение 1 часа. Полученная мембрана имеет макропористую асимметричную поровую структуру со средним диаметром пор в скин-слое около 50




где X = 95;
Y = 5 мол.%;

R1 = -(CH2)3-Si(CH3)2- O-S; (CH3)2-(CH2)3 - (ПАИ-2, ММ 40 тыс. д). Толщина диффузионного слоя 0,12 мкм, толщина подложки 140 мкм. Средний размер диаметра пор в скин-слое подложки 54

Транспортные характеристики определяют в условиях примера 1. Рабочая площадь мембраны в ячейке 12.4 кв.см. Все данные приведены в таблице 3 (все обозначения идентичны приведенным в таблице 1). Пример 4. Композитную двухслойную первапорационную мембрану получают в условиях примера 1 с использованием 8% раствора полиамидоимида с формулой звена:

(ПАИ-3, ММ 65 тыс.д). Диффузионный слой формируют из 0,1 мас.% водного раствора поли N,N,N, N-триметилметакрилоилоксиэтиламмоний метилсульфата с характеристической вязкостью 7,7 дл/г, то есть ММ около 30 млн д. Толщина диффузионного слоя 0.03 мкм, толщина подложки 160 мкм. Средний размер диаметра пор в скин-слое подложки 125


(ПАИ-4, ММ 42 тыс.д). Диффузионный слой формируют из 0,3 мас.% водного раствора поли N,N,N, N-триметилметакрилоилоксиэтиламмонийсульфата с характеристической вязкостью 6,8 дл/г. Толщина диффузионного слоя 0,08 мкм, толщина подложки 176 мкм. Средний размер диаметра пор в скин-слое подложки 180

Пример 6. Композитную двухслойную первапорационную мембрану получают в условиях примера 1 с использованием 15% раствора полиамидоимида с формулой звена:

(ПАИ-5, ММ 42 тыс.д). Диффузионный слой формируют из 0,2 мас.% водного раствора поли N,N,N, N-триметилметакрилоилоксиэтиламмоний бензолсульфата с характеристической вязкостью 7,72 дл/г, то есть ММ около 30 млн.д. Толщина диффузионного слоя 0,13 мкм, толщина подложки 162 мкм. Средний размер диаметра пор в скин-слое подложки 180

Пример 7. Композитную двухслойную первапорационную мембрану получают в условиях примера 2 с использованием полиамидоимида с формулой звена:

(ПАИ-6, ММ 52 тыс.д). Толщина диффузионного слоя 0,02 мкм, толщина подложки 200 мкм. Средний размер диаметра пор в скин-слое подложки около 140


Формула изобретения








а также сополиимидов ПАИ-1, содержащих 2 - 50 мономерных звеньев ПАИ-3, ПАИ-4, ПАИ-5 и ПАИ-6, с мол. м. 40 - 120 тыс. D, при нанесении раствора указанного полиамидоимида в апротонном полярном растворителе слоем толщиной 200 - 300 мкм на гладкую поверхность инертного материала с последующим погружением в осадительную ванну, состоящую из воды или водных растворов алифатических спиртов, содержащих два или три атома углерода, отделением сформованной подложки, промывкой водой и сушкой; на поверхности скин-слоя полученной подложки формируют диффузионный слой из поли-N,N,N,N-триметилметакрилоилоксиэтил аммониевой соли, выбранной из ряда, содержащего метилсульфат, бензолсульфат, сульфат, со степенью кватернизации 98 - 100% и мол.м. 1 - 30 млн.D, при нанесении 0,05 - 0,3 мас.% водного раствора указанного полимера на скин-слой микропористой подложки с последующей сушкой.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8