Способ электрокоагуляционной очистки сточных вод
Изобретение относится к области электрохимической очистки сточных вод электрокоагуляцией, в частности промышленных сточных вод, и может быть использовано на предприятиях машиностроительной, металлургической, химической и пищевой промышленности. Для осуществления способа электрокоагуляционной очистки сточных вод, включающего поляризацию растворимых и нерастворимых электродов с использованием тока переменной полярности и раздельное регулирование aмплитудaми анодного и катодного тока, используют импульсный ток с паузами между разнополярными импульсами и раздельным регулированием длительности разнополярных импульсов, причем длительность этих импульсов составляет одну четверть периода при соотношении амплитуды анодного и катодного импульсов 0,25-1, в диапазоне средних плотностей тока 0,5-2 А/дм2. Способ обеспечивает снижение расхода массы анода при одновременном повышении степени очистки сточных вод, а также повышение стабильности электрохимических процессов на катоде и снижение расхода электроэнергии. 3 табл. 3 ил.
Изобретение относится к области электрохимической очистки сточных вод электрокоагуляцией, в частности промышленных сточных вод, и может быть использовано на предприятиях машиностроительной, металлургической, химической и пищевой промышленности.
Известен способ электрокоагуляционной очистки сточных вод, включающий полимеризацию растворимых и нерастворимых электродов с использованием тока переменной полярности и раздельное регулирование амплитуд анодного и катодного тока (а.с. СССР N 1548159, C 02 F 1/46, 1990 г. - прототип). Способ предусматривает использование асимметричного переменного тока с различным коэффициентом асимметрии катодного и анодного тока, т.е. отношением амплитуд анодного и катодного импульсов, по схеме на фиг. 1. Недостатком способа является жесткая взаимосвязь величины потенциалов катода и анода, определяемой только коэффициентом асимметрии. В этом случае, если необходимо увеличить выделение водорода на катоде для флотации образующихся гидроксидов, то надо увеличить среднее значение плотности тока, что приводит к значительному смещению потенциалов анода в область потенциалов пассивации металла анода, что, в свою очередь, резко снижает поступление ионов извлекаемого металла в зону очистки и ограничивает использование способа для очистки воды от ионов тяжелых металлов, а при замедлении скорости анодного растворения снижается эффективность очистки сточных вод. Кроме того, при использовании переменного тока с раздельно-регулируемыми амплитудами анодного и катодного полупериодов (коэффициент асимметрии) возможет выход стационарного потенциала как в зону потенциалов активного растворения, так и в зону перепассивации, что приводит, в конечном итоге, к нарушению стабильности электрохимических процессов на катоде, а перемена полярности - к дополнительному расходу электроэнергии на выделение водорода на катоде. Задачей заявляемого изобретения является снижение расхода массы анода при одновременном повышении степени очистки сточных вод, а также повышение стабильности электрохимических процессов на катоде (процесс коагуляции) и снижение расхода электроэнергии. Поставленная задача решается тем, что в способе электрокоагуляционной очистки сточных вод, включающих поляризацию растворимых и нерастворимых электродов с использованием тока переменной полярности и раздельное регулирование амплитуд анодного и катодного тока, используют импульсный ток с паузами между разнополярными импульсами и раздельным регулированием длительности разнополярных импульсов, причем длительность этих импульсов составляет одну четверть периода при соотношении амплитуд анодного и катодного импульсов 0,25 - 1 в диапазоне средних плотностей тока 0,5 - 2 А/дм2. Использование импульсного тока с паузами между разнополярными импульсами позволяет потенциалу электрода, за счет его спада во время паузы, находиться в оптимальной зоне потенциалов анодной поляризационной кривой, что не изменяет скорость растворения анода. Независимое регулирование длительности импульсов позволяет выбрать значение анодного потенциала, при данной длительности катодного импульса с целью регулирования процесса его растворения, без воздействия на процессы, происходящие на катоде, обеспечивая их стабильность и эффективность очистки. Меньшая длительность импульсов по предлагаемому способу приводит к большей плотности тока в импульсе (при одинаковом среднем значении) и, как следствие, увеличению значения pH прикатодного слоя, что активизирует как анодный, так и катодный процессы и повышает степень очистки. Наличие бестоковой паузы способствует также отводу продуктов электрохимического процесса, что снижает общие расходы электроэнергии. Способ осуществляется следующим образом. Очистку сточных вод производят с использованием периодического импульсного тока с паузами между разнополярными импульсами по схеме на фиг. 2. Длительность анодного и катодного импульсов




Формула изобретения
Способ электрокоагуляционной очистки сточных вод, включающий поляризацию растворимых и нерастворимых электродов с использованием тока переменной полярности и раздельное регулированное амплитуд анодного и катодного тока, отличающийся тем, что используют импульсный ток с паузами между разнополярными импульсами и раздельным регулированием длительности разнополярных импульсов с длительностью импульсов, составляющими одну четверть периода, соотношением амплитуд анодного импульса к катодному от 0,25 до 1 в диапазоне средних плотностей тока от 0,5 до 2 А/дм2.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6