Способ получения биомассы фотоавтотрофных микроорганизмов и установка для его осуществления
Изобретение относится к микробиологической, пищевой и медицинской промышленности. Способ получения биомассы фотоавтрофных микроорганизмов предусматривает их выращивание в замкнутом циркуляционном контуре при освещенности фотореакторов в начальной стадии процесса 6,0-8,0 клк и ее увеличении в установившемся режиме до 20-60 клк. Углекислый газ вводят в циркуляционный контур в смеси с воздухом или инертным газом, при этом его концентрация составляет 2-20 об.% В процессе выращивания поддерживают постоянную концентрацию микроорганизмов в культуральной жидкости путем регулирования ее количества, отводимого из контура. Способ осуществляют в установке, выполненной в виде замкнутого циркуляционного контура, содержащего трубчатые светопрозрачные фотореакторы, теплообменник, десорбер, циркуляционный насос, средства ввода газа в культуральную жидкость и трубопровод подачи питательной среды. Средство ввода газа содержит камеру смешивания углекислого газа с воздухом или инертным газом и эжектор для ввода смеси в жидкость, диффузор которого подключен к подводящему трубопроводу фотореакторов, а его корпус снабжен кольцевым коллектором, сообщенным с камерой смешивания и при помощи каналов с диффузором эжектора. Установка снабжена системой регулирования количества отбираемой культуральной жидкости и подаваемой питательной среды. Изобретение позволяет повысить выход биомассы и изменять ее качественные показатели в зависимости от требований потребителя. 2 с. и 2 з.п.ф-лы, 2 ил.
Изобретение относится к микробиологической, пищевой и медицинской промышленности, в частности к получению биомассы хлореллы или спирулины.
Известен способ получения биомассы фотоавтотрофных микроорганизмов, спирулины, предусматривающий посев инокулята в минеральную среду, выращивание микроорганизмов в условиях постоянного освещения при 33-37oC (SU, авт. св. N 1662442, A 01 G 33/00, 1991). Известен способ получения биомассы фотоавтотрофных микроорганизмов, предусматривающий приготовление питательной среды с использованием сточных вод животноводческих комплексов, внесение в нее инокулята микроводорослей, культивирование их в накопительном режиме при перемешивании и освещении до максимального прироста биомассы. На первой стадии культивирование осуществляют до достижения pH в суспензионной культуре 9,4-9,6 и последующего культивирования в течение 12-24 ч при данном значении pH, после чего отстаивают суспензионную культуру для формирования коллоидального осадка, удаляют образовавшийся осадок и проводят вторую стадию культивирования (SU, авт. св. N 1621823, A 01 G 33/00, 1991). Недостатки приведенных известных способов заключаются в низкой скорости выращиваемых культур микроорганизмов, низком выходе биомассы и в отсутствии стабильности состава получаемой биомассы. Ближайшим техническим решением по предложенному способу является способ получения биомассы фотоавтотрофных микроорганизмов, предусматривающий подачу питательной среды в замкнутый циркуляционный контур установки, содержащий фотореакторы, введение в питательную среду инокулята и углекислого газа, выращивание микроорганизмов в процессе циркуляции в замкнутом контуре при освещении фотореакторов и отвод выращенной биомассы из контура (SU, авт. св. N 1642965, A 01 G 33/00, 1991). Выращивание осуществляют на минеральной питательной среде с использованием в качестве источника углеродного питания углекислого газа. Выращивание микроорганизмов проводят в периодическом режиме. При завершении экспоненциальной фазы роста культуры отбирают часть суспензии, и вводят соответствующее количество минеральной питательной среды. Затем возобновляют рециркуляцию суспензии и повторяют выращивание культуры в периодическом режиме. Регулирование освещенности фотореакторов не предусмотрено. Недостатком этого способа является то, что единственным компонентом газовой фазы, вводимым в суспензию растущей культуры, является углекислый газ. В результате процесса роста, происходящего при движении суспензии по длине фотореактора, в газовой фазе накапливается кислород, являющийся продуктом жизнедеятельности фотоавтотрофов, что приводит к увеличению его концентрации в газовой фазе при снижении концентрации углекислого газа. При этом кислород является ингибитором роста фотоавтотрофов, приводящим к снижению скорости роста культуры, причем ингибирующее влияние кислорода начинает существенно проявляться при концентрациях кислорода выше 20-25% и приводит к прекращению роста культур фотоавтотрофов при концентрациях кислорода в газовой фазе выше 35-45%. В результате время пребывания в фотореакторе ограничено этим фактором, а учитывая ограничения на допустимую скорость движения суспензии в трубах фотореактора, это ограничивает длину труб фотореакторов (полезный объем установки для культивирования). Превышение допустимого объема приводит к невозможности осуществления непрерывного процесса культивирования фотоавтотрофов. Известна установка для получения биомассы фотоавтотрофных микроорганизмов, в частности микроводорослей, содержащая трубчатый фотореактор, систему циркуляции среды, включающую побудитель расхода, теплообменник и газообменник, соединенные последовательно и подключенные к фотореактору, и устройство для изменения скорости потока суспензии в зависимости от ее температуры, размещенное внутри трубчатого фотореактора (SU, авт. св. N 1669979, C 12 M 3/02, 1991). Недостаток установки заключается в том, что введение в контур циркуляции дополнительного сопротивления для регулирования скорости циркуляции вызывает дополнительные энергозатраты на получение биомассы, превышающие положительный эффект дополнительной стабилизации температуры. Известна установка для получения биомассы фотосинтезирующих микроорганизмов, в частности цианобактерий, содержащая светопрозрачный трубчатый реактор в виде змеевика с патрубками для подвода и отвода суспензии микроорганизмов, источники света и емкость для питательной среды, сообщенную с реактором, при этом витки змеевика образуют вертикальный цилиндр, а источники света установлены внутри и снаружи этого цилиндра (SU, авт. св. N 1664836, C 12 M 3/02, 1991). Недостаток этой установки заключается в том, что она позволяет обеспечивать низкую скорость выращиваемых микроорганизмов и не может быть масштабирована на условии массового производства биомассы фотоавтотрофов. Ближайший техническим решением к предложенной установке является установка для получения биомассы фотосинтезирующих микроорганизмов, выполненная в виде замкнутого циркуляционного контура, включающего трубчатые светопрозрачные фотореакторы, снабженные источниками света и подводящими и отводящими трубопроводами с регулирующими клапанами, подключенный к ним теплообменник, десорбер с патрубками подачи инокулята и отвода культуральной жидкости, циркуляционный насос, связанный трубопроводом с десорбером, средство ввода газа в циркулирующую суспензию и трубопровод подачи питательной среды (SU, авт. св. N 1642965, A 01 G 33/00, 1991). Недостатком этой установки и способа культивирования, для которого она предназначена, является то, что единственным компонентом газовой фазы, поступающей на вход фотореактора является углекислый газ, поэтому образующийся в процессе культивирования кислород быстро достигает ингибирующих концентраций, что приводит к снижению скорости роста культуры микроорганизмов, нарушает стабильность процесса и как следствие - производительность процесса культивирования. Кроме того, подача газовой фазы на всасывающую линию побудителя расхода снижает производительность побудителя расхода и повышает энергетические затраты процесса культивирования. Технический результат изобретения в части как способа, так и установки заключается в повышении выхода биомассы и возможности изменения ее состава и использования таким образом полученной биомассы для получения различных биологически активных продуктов. Для достижения этого результата в предложенном способе получения биомассы фотоавтотрофных микроорганизмов, преимущественно спирулины, предусматривающем подачу питательной среды в замкнутой циркуляционный контур установки, содержащей фотореакторы, введение в питательную среду инокулята и углекислого газа, выращивание микроорганизмов в процессе циркуляции в замкнутом контуре при освещении фотореакторов и отвод выращенной биомассы из контура, выращивание ведут при освещенности фотореакторов в начальной стадии 6,0 - 8,0 клк и последующем ее увеличением в установившемся режиме до 20 - 60 клк, углекислый газ вводят в циркуляционный контур в смеси с воздухом или инертным газом с концентрацией его в смеси 2 - 20 об.%, при этом в процессе непрерывного выращивания поддерживают постоянную концентрацию микроорганизмов в культуральной жидкости путем регулирования количества биомассы, отводимой из циркуляционного контура. Следует отделять биомассу от культуральной жидкости. Последнюю используют для приготовления питательной среды. Для достижения указанного технического результата в установке для получения биомассы фотоавтотрофных микрооорганизмов, выполненной в виде замкнутого циркуляционного контура, включающего трубчатые светопрозрачные реакторы, снабженные источниками света и подводящим и отводящим трубопроводами, подключенный к ним теплообменник, десорбер с патрубками подачи инокулята и отвода культуральной жидкости, циркуляционный насос, связанный трубопроводом с десорбером, средство ввода газа в циркулируемую культуральную жидкость и трубопровод подачи питательной среды, указанное средство ввода газа содержит камеру смешивания углекислого газа с воздухом или инертным газом и эжектор для ввода газовой смеси в культуральную жидкость, конфузор которого подключен к напорному патрубку циркуляционного насоса, а его корпус снабжен кольцевым коллектором, сообщенным с камерой смешивания и при помощи каналов с диффузором эжектора, при этом последний подключен к подводящему трубопроводу фотореакторов. Установка снабжена системой регулирования количества отбираемой культуральной жидкости и подаваемой питательной среды, содержащей датчик концентрации микроорганизмов в жидкости, регулятор и связанные с ним клапаны, установленные на трубопроводах подачи питательной среды и на патрубке отбора культуральной жидкости из десорбера, а также системой регулирования освещенности фотореакторов, содержащей датчики освещенности фотореакторов, установленные на трубах фотореакторов, регулятор и исполнительный механизм для включения источников света. Установку следует снабдить сборником отбираемой культуральной жидкости, устройством выделения биомассы из культуральной жидкости, сушилкой, сборником питательной среды, снабженным патрубком для подвода полученной при выделении биомассы отработанной культуральной жидкости. Способ получения биомассы фотоавтотрофных микроорганизмов, преимущественно спирулины, заключается в следующем. Подают минеральную питательную среду в замкнутый циркуляционный контур установки, включающий фотореакторы, и вводят в питательную среду инокулят. В качестве газового питания используют смесь углекислого газа с воздухом или инертным газом, в частности азотом. Концентрация углекислого газа в смеси составляет 2 - 20 об.%. Смесь газов вводят в циркуляционнй контур. Питательная среда содержит хлористый натрий, карбонат натрия, азот, фосфор, калий, магний, железо и микроэлементы. Доводят pH и температуру среды до рабочего значения. После введения инокулята включают освещение фотореакторов таким образом, чтобы обеспечить освещенность их стенок, равную 6,0 - 8,0 клк, и осуществляют непрерывную подачу в циркулируемую среду газовой смеси. В зависимости от требуемого качества готового продукта (состава выращенной биомассы микроорганизмов) устанавливают необходимую концентрацию углекислого газа в смеси в интервале 2 - 20 об.%. В процессе циркуляции культуральной жидкости происходит рост микроорганизмов. При достижении заданного уровня концентрации микроорганизмов осуществляют переход на непрерывный процесс, заключающийся в непрерывном отборе культуральной жидкости из циркуляционного контура и соответствующей подаче в указанный контур минеральной питательной среды при поддержании заданного объема среды культивирования в циркуляционном контуре. При этом величину отбираемого потока культуральной жидкости устанавливают и корректируют в течение непрерывного процесса таким образом, чтобы концентрация микроорганизмов в циркуляционном контуре поддерживалась на постоянном уровне. Установлено, что изменение освещенности в диапазоне 20 - 60 клк помимо изменения скорости роста культуры приводит к изменению содержания хлорофилла в биомассе фотоавтотрофов, при этом содержание хлорофилла в биомассе при освещенности 20 клк в 1,6 раза больше, чем при освещенности 60 клк. В то же время содержание бета-каротина увеличивается в 1,25 раз при изменении освещенности с 60 до 20 клк. Изменение содержания углекислого газа в составе газовой смеси влияет на содержание полиненасыщенных жирных кислот. При изменение содержания углекислого газа в газовой смеси с 2 до 20% содержание полиненасыщенных жирных кислот увеличивается в 1,7 раз. При концентрации углекислого газа в газовой смеси ниже 2%, как и при освещенности ниже 6 клк процессы фотосинтеза практически отсутствуют. Содержание углекислого газа выше 20% и освещенности выше 60 клк экономически не оправдано. Установлено также, что в трубчатых фотореакторах существует оптимальная концентрация биомассы в процессе выращивания, превышение которой приводит к неравномерности освещенности культуральной жидкости по радиусу труб фотореактора и, как следствие, к снижению стабильности процесса непрерывного выращивания и стабильности состава биомассы. Снижение концентрации биомассы ниже оптимального уровня приводит к снижению выхода биомассы. Для труб фотореактора диаметром 40 мм при выращивании спирулины оптимальная концентрация биомассы в культуральной жидкости сотсавляет 3 г/л. Отбираемую из циркуляционного контура культуральную жидкость сгущают до необходимой концентрации. Концентрат биомассы промывают раствором хлористого натрия, повторно концентрируют и сушат. Отделенная в результате сгущения отработанная культуральная жидкость представляет собой раствор неиспользованных в процессе культивирования компонентов минеральной питательной среды и продуктов метаболизма выращиваемых микроорганизмов. Этот раствор используют для приготовления минеральной питательной среды, используемой в процессе выращивания микроорганизмов, путем корректировки состава (добавление воды и доведение концентраций минеральных компонентов до исходного уровня). Полученная после сгущения среда выращивания может составлять до 95% в составе минеральной питательной среды, подаваемой в циркуляционный контур. Практически осуществляют полное повторное использование среды без снижения выхода биомассы. Пример. В установку для культивирования фотоавтотрофов, представляющую собой замкнутый циркуляционный контур, содержащий фотореакторы подают 100 л минеральной питательной среды Зарука следующего состава (г/л): NaHCO3 - 16,8 NaNO3 - 6,0 NaCl - 2,0 K2HPO4 - 0,5 K2SO4 - 1,0 MgSO4 - 0,2 Железо хлорное - 2,0 Раствор микроэлементов - 1,0 мл Состав раствора микроэлементов (г/л):H3BO3 - 2,860
MnCl2

ZnSO4

NH4VO3 - 0,023
(NH4)

NiSO4

CoCl2

CuSO4

K2Cr2(SO4)4

После нагревания среды до 36oC при циркуляции среды в теплообменнике, входящем в контур циркуляции, и достижения pH 8,5 путем добавления раствора KOH в питательную среду вводят инокулят Spirulina platensis в количестве, обеспечивающем концентрацию микроорганизмов в среде на уровне 0,5 г/л. После введения инокулята включают подачу газовой смеси воздуха и углекислого газа с концентрацией углекислого газа в смеси 10 об.%. Количество газовой смеси устанавливают на уровне 500 л/ч. Одновременно включают источники света и устанавливают освещенность стенок фотореактора на уровне 6 клк. В процессе культивирования стабилизируют pH и температуру суспензии в циркуляционном контуре. Через 40 ч культивирования концентрация микроорганизмов достигает 3 г/л. Отбирают суспензию из циркуляционного контура в количестве 5 л/ч. Одновременно подают минеральную питательную среду в циркуляционный контур в таком же количестве 5 л/ч. Одновременно увеличивают освещенность фотореакторов до 60 клк для обеспечения максимальной производительности. Непрерывный процесс осуществляют в течение 20 суток. При этом скорость отбора биомассы изменяют в пределах от 4,4 до 5,4 л/ч при поддержании концентрации биомассы 3 г/л. Качественный состав биомассы не изменяют в процессе культивирования в течение всего процесса выращивания. Выход биомассы составляет 0,15 г/л


Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2