Устройство доставки лекарственного препарата, способ получения устройства
Изобретение относится к медицине, а именно к устройствам для контролируемого выделения полезного агента в виде гелеобразной дисперсии. Устройство состоит из ядра, которое содержит терапевтически полезный агент, полимер, который образует гелеобразные микроскопические частицы при гидратации, и, при необходимости, агент для модуляции гидратации полимера, и водонепроницаемого водонераетворимого покрытия, содержащего отверстия, которое адгезирует к ядру и окружает ядро. Отверстия обеспечивают поверхность для гидратации и освобождения дисперсии, содержащей гелеобразные микроскопические частицы. Система контролирует скорость освобождения лекарственного препарата и обеспечивает повышенную стабильность для тех активных веществ, которые лабильны в жидкости. 2 c. и 28 з.п. ф-лы, 7 ил., 2 табл.
Изобретение относится как к полезному, так и новому устройству доставки лекарственного препарата для распределения лекарственного препарата в окружающую среду использования. В частности, изобретение относится к системе, которая освобождает лекарственный препарат контролируемым образом, путем создания гелеобразных микроскопических частиц полимера и, делая это, порождает дисперсию лекарственного препарата среди микроскопических частиц. Эта дисперсия затем движется от поверхности устройства в водную окружающую среду использования.
Устройство состоит из ядра, содержащего полезный агент, такой как медикамент, полимера, который обеспечивает гелеобразные частицы при гидратации и, при необходимости, агента, модулирующего гидратацию. Устройство полностью покрыто нерастворимым, непроницаемым покрытием. Покрытие содержит отверстие, обнажающее отдельные части поверхности ядра. Скорость доставки медикамента есть функция композиции ядра, а также число в размере отверстий. В окружающей среде использования, биологическая жидкость контактирует с обнаженными частями поверхности ядра, где и начинается гидратация полимера на поверхности. По мере того как частицы полимера из обнаженной поверхности абсорбируют воду, образуется гелеобразная микроскопическая дисперсия частиц. Другие компоненты зерна, такие как лекарственный препарат, смешаны с и диспергированы в этих микроскопических частицах. Обнаженная часть поверхности ядра связана на всех сторонах покрытием. Гидратация полимера происходит на обнаженной поверхности ядра, приводя к образованию устойчивой дисперсии гелеобразных микроскопических частиц, внутри которой распределен лекарственный препарат, в которой движется к окружающей среде использования. Скорость освобождения полезного агента не зависит от растворенности полезного агента в биологической жидкости. Скорее, скорость высвобождения, в основном, зависит от скорости, при которой образуется дисперсия гелеобразных микроскопических частиц на обнаженной поверхности ядра устройства и выделяется из устройства, вынося с собой полезный агент в любые другие наполняющие ядро вещество, которые присутствуют. Уровень техники Потребность в системах, которые могут поставлять любой лекарственный препарат с контролируемой скоростью освобождения в окруженную среду использования на протяжении регламентированного периода времени неоспоримо. Пат. США 4814182 раскрывает использование стержней или пластин предварительно гидратированного и набухшего полиэтиленоксидного гидрогеля. Полимер пропитывается биологически активным агентом во время проведения гидратации. Затем гидратированный полимер сушат и частично покрывает непроницаемым, нерастворимым веществом. При помещении в водную окружающую среду, полимер набухает, но не растворяется или разлагается. Захваченный активный ингредиент освобождается из полимера путем диффузии. Механизм выделения основан на способности растворенного лекарственного препарата диффундировать сквозь повторно гидратированный гидрогель и поступать в водную окружающую среду. Пат. США 4839177 раскрывает использование гидрогелей, спрессованных до определенных геометрических форм. В этом устройстве, полимер смешивают с биологически активными ингредиентами с образованием ядра, которое прикрепляют к "поддерживающей платформе", сделанной из нерастворимого полимерного вещества. При гидратации, набухающий, гелеобразующий гидрогель расширяется за пределы устройства и образует суперструктуру, из которой высвобождается активный агент либо путем диффузии, если активный агент растворимый, или путем эрозии, если активный агент нерастворим. Воспроизведение и поддерживание суперструктуры является необходимым для надлежащего функционирования данного устройства. Осмотическая лекарственная форма, которая использует полупроницаемую стенку, содержащую по крайней мере одно "выходное устройство", которое проходит сквозь стенку, окружающую ядро, содержащее осмотический агент, нейтральный и способный к ионизации гидрогель и активный ингредиент, раскрывается в Пат. США 4971790. Покрытие этого устройства проницаемо для воды из окружающей среды использования. Вода движется в ядро через полупроницаемую мембрану. В какое-то время вода внутри устройства солюбилизирует осмотический агент, и гидратирует гидрогели. Внутри устройства создается давление. В конечном счете, солюбилизированный гидрогель, содержащий полезный агент, и другие наполнители ядра, под давлением выдавливается из ядра через выходное устройство в окружающую среду использования. Существующая технология ограничена, поскольку диффузионно-контролируемые системы эффективны только тогда, когда освобождается растворимые активные агенты. Для осмотически контролируемых устройств технология опирается на стенку, проницаемую для прохождения жидкости, присутствующей в окружающей среде использования. Кроме того, этим устройствам требуется стенка с тщательно контролируемой проницаемостью. Устройства, в основе которых лежит создание суперструктуры, за пределами устройства могут подвергаться изменениям во время in vivo прохождения, например через желудочно-кишечный тракт. Если части суперструктуры разрушается, большая площадь поверхности обнажается для окружающей среды, что может привести к непредсказуемому выделению активного агента. Полезность вышеприведенных устройств можно было бы повысить, если разработать устройство и способ для улучшения доставки лекарственных препаратов, независимо от их растворимости, так чтобы можно было избежать диффузии из набухшего полимера или через суперструктуру полимерной матрицы. Еще одну полезность можно извлечь из методологии, которая обеспечивает устройство, в котором можно было бы избежать генерацию структуры за пределами таблетки и в котором сухие ингредиенты могли бы содержаться внутри защитного покрытия до тех пор, пока они не начнут освобождаться из устройства. Это может предотвратить возможность преждевременной эрозии и неконтролируемого освобождения активного агента, а также обеспечить повышенную стабильность для тех активных агентов, которые лабильны в жидкости окружающей среды использования. Фиг. 1 является схематическим представлением одного из вариантов осуществления изобретения. Устройство 10 имеет композицию ядра 11, состоящую из полезного агента 12 и полимера 13, способного при гидратации образовывать дисперсию гелеобразных микроскопических частиц. Ядро может произвольно содержать агент 14, модулирующий гидратацию полимера, и другие образующие таблетку наполнители 15. Ядро окружено нерастворимым, непроницаемым покрытием 16 с множеством отверстий 17, которые обнажают поверхность ядра для окружающей среды использования. При работе, водный раствор из окружающей среды использования контактирует с поверхностью ядра, которая обнажается внутри отверстий 17. Имеющаяся вода начинает гидратировать полимер (13) и на поверхности ядра образуются гелеобразные микроскопические частицы. Агент 14, модулирующий гидратацию полимера, если присутствует, солюбилизируется на обнаженной поверхности ядра и создает окружающую среду, требуемую для контролируемой гидратации полимера. Как только полимерные частицы 13 гидратируются, гелеобразные микроскопические частицы движутся с поверхности. В то же самое время гелеобразные микроскопические частицы перемещают полезный агент 12 с окружающей поверхности в окружающую среду. Эти частицы полезного агента движутся от поверхности ядра в окружающую среду использования в дисперсии с гелеобразными микроскопическими частицами. В результате, контролирование площади поверхности ядра, которая обнажается для окружающей среды использования, эффективно контролирует скорость доставки медикамента в окружающую среду. Настоящее изобретение обеспечивает новое устройство для доставки активного или полезного агента (лекарственного препарата), в дисперсии, и обеспечивает полезное действие, которое перекрывает недостатки, связанные с устройствами предшествующего уровня техники. Настоящее изобретение также обеспечивает устройство для доставки активного или полезного агента, in situ в виде дисперсии, при контролируемой скорости на протяжении регламентированного периода времени, и эта доставка контролируется выбором компонентов устройства, а не окружающей средой, окружающей данное устройство. Кроме того, настоящее изобретение обеспечивает устройство для контролируемой доставки полезного агента, в котором скорость выделения полезного агента не связана ни с растворимостью полезного агента, ни с in vivo созданием суперструктуры за пределами таблетки. Кроме того, настоящее изобретение обеспечивает устройство для контролируемой доставки полезного агента, в котором доставка происходит от поверхности устройства, а не из внутренности ядра, так что скорость доставки не зависит от диффузии активного ингредиента изнутри устройства к окружающей среде использования. Другие признаки и преимущества изобретения очевидны специалистам в данной области техники из последующего подробного описания изобретения, рассматриваемого в сочетании с чертежами и сопровождающей его формулой изобретения. Подробное описание изобретения Новое устройство данного изобретения состоит, в основном, из устройства доставки лекарственного препарата для контролируемого in situ получения и освобождения дисперсии, содержащей полезный агент, состоящего, в основном, из: (A) спрессованного ядра, полученного из смеси, содержащей: (i) терапевтически эффективное количество полезного агента; и (ii) полимер, который при гидратации образует гелеобразные микроскопические частицы; (B) водонерастворимого, водонепроницаемого полимерного покрытия, которое окружает ядро и адгезирует к ядру, и это покрытие имеет множество отверстий, обнажающих от около 1 и до около 75% поверхности ядра. Под "устройством доставки лекарственного препарата" подразумевают лекарственную форму, которая обеспечивает обычный способ доставки лекарственного препарата к субъекту. Субъект может быть человеком или любым другим животным. Устройство конструируют так, чтобы оно было пригодным для доставки лекарственного препарата любым фармацевтически принятым способом, таким как набухание, удерживание его внутри рта до тех пор, пока полезный агент не распределится, помещение его внутрь щечной полости, или тому подобное. Под "контролируемым" получением подразумевают, что скорость освобождения полезного агента, т.е. количество полезного агента, освобождаемого из устройства в окружающую среду использования, следует картине, определенной ранее. Таким образом, относительно постоянные или предсказуемо изменяющиеся количества полезного агента могут освобождаться на протяжении регламентированного периода времени. "Гелеобразные микроскопические частицы" состоят из дискретных частиц гидратированного полимера. Как размер, так и скорость гидратации этих гелеобразных микроскопических частиц являются характеристиками индивидуальных полимеров. Иллюстративными примерами этого типа полимера являются полиакрилат натрия, в частности, его композиции, доставляемые под торговыми марками AQUAKEEP(R) J-550, AQUAKEEP(R) J-400, которые являются торговыми названиями полимера акрилата натрия, производимого Seitetsu Kagaku Co., Ltd., Hyogo, Japan, AQUAKEEP(R) полимеры, в основном, описаны в Пат. США 4340706. Также иллюстрацией такого типа полимера являются карбоксиполиметилены, получаемые из акриловой кислоты, сшитой аллиловыми эфирами сахарозы или пентаэритритолом, и поставляемые под торговыми марками CARBOPOL(R) 934P и CARBOPOL(R) 974P, которые являются торговыми названиями для двух полимеров карбомерного типа, производимых B.F. Goodrich Chemical Company, Cleveland, Ohio. Эти последние полимеры, в основном, описаны в Пат. США 2909462 и в National Formulary XV11, p. 1911, CAS Registry Number 9003-01-4. Все из вышеприведенных ссылок приведены здесь в качестве уровня техники. В сухом состоянии CARBOPOL(R) 974P и CARBOPOL(R) 934P варьируются по размеру от около 2 до около 7 микрон. После того как эти частицы гидратируют, получаются гелеобразные микроскопические частицы размером около 20 микрон. После того как AQUAKEEP(R) J-550 или AQUAKEEP(R) J-400 частицы гидратируют, диаметр гелеобразных микроскопических частиц может варьироваться по размеру от 100 до 1000 микрон. Как только устройство доставки лекарственного препарата помещают внутрь среды использования, полимер спрессованного ядра, которое подвергается действию окружающего водного раствора в отверстиях покрытия, начинает гидратироваться и образует гелеобразные микроскопические частицы. Под in situ получением и освобождением дисперсии" имеют в виду, что во время получения гелеобразных микроскопических частиц, растворимые и нерастворимые компоненты ядра, расположенные вблизи полимерных частиц, диспергируются и смешиваются таким образом, что получаются гелеобразная дисперсия. Эта дисперсия движется от устройства в водный растворитель, вынося полезный агент в окружающую среду использования. В этом новом устройстве компоненты спрессованного ядра движутся в окружающую среду использования, уносимые вместе с гелеобразными микроскопическими частицами, непрерывно обнажая новые поверхности для дальнейшей гидратации и получения дисперсии. Под "гелеобразной" подразумевают полутвердую систему, состоящую из гидратированного полимера, глубоко пронизанным водным растворителем окружающей среды использования. Под "спрессованным ядром" подразумевают, что смесь ингредиентов, включающая полезный агент, полимер, который образует гелеобразные микроскопические частицы при гидратации, и другие ингредиенты, которые могут воздействовать либо на (1) скорость образования дисперсии; либо на (2) стабильность компонентов лекарственной формы; или на (3) смешение или компрессионные характеристики смеси, смешивают таким путем, чтобы получить однородный материал. Этот однородный материал затем прессуют, получая при штамповке требуемую форму, обычно форму таблетки, капсулы или шарика. Спрессованное ядро содержит терапевтически эффективное количество полезного агента и полимер, который при гидратации дает гелеобразные микроскопические частицы. Термин "полезный агент", в широком смысле, включает любой лекарственный препарат или смесь их, который может выделяться из системы, производя полезный результат. Лекарственный препарат может быть растворимым в жидкости, которая контактирует с обнаженной поверхностью ядра, или лекарственный препарат может быть, в основном, нерастворим в жидкости. В описании и сопутствующей формуле изобретения, термин "лекарственный препарат" и его эквиваленты включает любое физиологически или фармакологически активное вещество, которое оказывает локализованное или систематическое действие или действия на животных. Термин "животное" включает млекопитающих, людей и приматов, таких как прирученные, домашние, спортивные или сельскохозяйственные животные, такие как овца, козы, крупный рогатый скот, лошади и свиньи, лабораторные животное, такие как мыши, крысы и морские свинки, рыбы, птицы, рептилии и зоологические животные. Активный лекарственный препарат, который может выделяться новым устройством данного изобретения, включает неорганические и органические соединения без ограничения, включая лекарственные препараты, которые действуют на периферические нервы, адренергические рецепторы, холинергические рецепторы, нервную систему, скелетные мышцы, кардиоваскулярную систему, гладкие мышцы, систему циркуляции крови, синаптические участки, нейроэффекторные функциональные участки, эндокринную и гормональную системы, иммунную систему, репродуктивную систему, костные системы, autocoid системы, пищеварительную и выделительную системы, ингибиторную и гистаминную системы, и такие вещества, которые действуют на центральную нервную систему, такие как снотворные и седативы. Примеры полезных лекарственных препаратов раскрыты в Remington's Pharmaceutical Science, 16th Ed. , 1980, опубликованной Mack Publishing Co., Eaton, Pa. ; и в The Pharmacological Basis of Therapeutics, by Goodman and Gilman, 6th Ed. , 1980, опубликованной MackMillan Company, London; и в The Merck Index, 11th Edition, 1989, опубликованной Merk & Co., Rahway, N.J. Растворенный лекарственный препарат может быть в различных формах, таких как заряженные молекулы, заряженные молекулярные комплексы или ионизируемые соли. Приемлемые соли включают, но ими не ограничиваются, такие как гидрохлориды, гидробромид, сульфат, лаурат, пальмитат, фосфат, нитрат, борат, ацетат, малеат, малат, сукцинат, трометамин, тартрат, олеат, салицилат, соли металлов, и амины или органические катионы, например кватернизованный аммоний. Производные лекарственных препаратов, такие как сложные эфиры, простые эфиры и амиды, без учета их характеристик ионизации и растворимости, могут быть использованы сами по себе или в смеси с другими лекарственными препаратами. Также лекарственный препарат можно использовать в форме, которая при освобождении из устройства превращается ферментами, которые гидролизуют при pH организма, или с помощью других метаболитических процессов, в первоначальную форму, или в биологически активную форму. К конкретным примерам лекарственных препаратов, которые могут быть адаптированы для использования, относятся ингибиторы. Ангиотензин-превращающего фермента (АПФ), такие как эналаприл, лизинаприл, и каптоприл; барбитураты, такие как пентобарбитал натрия, фенобарбитал, сокобарбитал, тиопентал и их смеси; гетероциклические снотворные, такие как диоксопиперидины и глутаримиды; снотворные и седативы, такие как амиды и мочевины, примерами которых служат диэтилизовалерамид и








Таблетки для контролируемого освобождения лекарственного препарат - индометацина изготавливают следующим образом, используя 1:1 весовое отношение лекарственный препарат:
- 550 полимер. Компонент ядра - Вес (г)
AQUAKEEP(R)J-550 - 2
Индометацин - 2
Avicel PH101 - 400 мг
Povidone (K29-32) - 60 мг в 6 мл - EtOH
Индометацин, J-550 и Avicel тщательно смешивают и гранулируют с поливинилпирролидоном в виде 1% по весу раствора в этиловом спирте. Сольватированную массу пропускают через сито со стандартным размером 18 меш, затем сушат на протяжении ночи при 45oC. Ядра таблеток получают из полученной грануляции путем отбора приблизительно 115 мг гранул и их прессования на Carvere(R) прессе, используя 1/4-дюймовые вогнутые стандартные пуансоны. Полученные ядра таблеток покрывают покрытием из поливинилхлорида (ПВХ), погружая 5 раз в разбавленный прозрачный пропиточный раствор поливинилхлорида. Эти таблетки прокатывают на ребре каждый раз по тефлоновому листу, чтобы предотвратить слипание. Каждой таблетке дают возможность просохнуть в течение приблизительно часа между последовательными покрытиями, и таблетки сушат в течение приблизительно 8 часов после проведения пятого покрытия. Пять круглых отверстий диаметром 1,5 на мм просверливают на наружной поверхности покрытия каждой таблетки. Определяли выделение индометацина из таблеток, покрытых оболочкой с отверстиями, в 900 мл фосфатного буфера с pH 7,5 при 37oC при перемешивании 100 об/мин (USP аппарат 2). Измеряли абсорбцию индометацина при 320 нм, используя Cary-14 спектрофотометр. На фиг. 2 представлены профили высвобождения индометацина для лекарственных форм, покрытых оболочкой с отверстиями. Пример 2
Таблетки получают согласно методике, описанной в примере 1, за исключением того, что смесь для ядер включает индометацин и J-550 полимер в весовом соотношении 1:3. Скорости выделения индометацина определяют по методике примера 1, результаты представлены на фиг. 2. Примеры 3 и 4
Таблетки получают согласно методикам примеров 1 и 2. Ядра из рецептуры, содержащей индометацин и J-550 в весовом соотношении 1:1 и 1:3, покрывают оболочкой из бутират ацетат целлюлоза БАЦ 381-20 (Eastman Fine Chemicals) путем распыления с помощью машины для нанесения покрытий Freund(R) Model HCT-Mini Hi-Coater (8-дюймовая ванна) из 4%-го раствора метиленхлорид: метанол (1: 1) в расчете на вес твердых веществ. Толщина покрытия составляет 250 микрон для композиции ядра при соотношении индометацин: J-550=1:1, и 400 микрон при соотношении 1:3. Скорости освобождения индометацина определяли, как в примере 1, и представлены на фиг. 2. Пример 5
Таблетки для контролируемого выделения симвестатина получают из следующей рецептуры:
Ингредиент - мг/таблетка
Симвастатин - 100
AQUAKEEP(R) J-550 - 100
Avicel PH 101 - 100
Povidone (K29-32) - 7,8
Стеарат магния - 1,5
Всего - 309,3
Высушенные ингредиенты, за исключением стеарата магния, тщательно смешивают и гранулируют с абсолютным спиртом. Сольватированную массу пропускают через N 18 сито из нержавеющей стадии и затем сушат в течение двадцати четырех часов при 37oC. Высушенные гранулы продавливают через N 35 меш сито из нержавеющей стали перед замасливанием стеаратом магния. Эту гомогенизированную смесь прессуют в таблетки, используя 3/8 дюймовые стандартные вогнутые круглые пуансоны. Таблетки прессуют до твердости 19 кг. На таблетки наносят покрытие с помощью машины для нанесения покрытий Freund(R) Model HCT-Mini Hi-Coater (8-дюймовая ванна) толщиной 25 мк, используя следующую рецептуру для покрытия:
Ингредиент - Количество
Бутират ацетатцеллюлозы САВ
381-20 - 48 г
Ацетат целлюлозы СА 435-75 - 12 г
Метиленхлорид - 2250 мл
Метанол - 750 мл
Диэтилфталат - 6 г
Круглые отверстия в покрытии делают, используя трубчатое сверло с вн. диаметром 2,80 мм, которое обеспечивает отверстия приблизительно 3,0 мм. In vitro выделение симвастатина из таблеток с тремя круглыми отверстиями диаметром 3,0 мм на поверхности каждой осуществляют при 37oC, в фосфатном буфере с pH 7,4, содержащем 0,5% по весу доцецилсульфата магния, при 100 об/мин, используя USP Apparatus 2 Результаты представлены на фиг. 3. Пример 6
Таблетки для контролируемого освобождения ловастатина получают из следующей рецептуры:
Ингредиент - мг/таблетка
Ловастатин - 20
CARBOPOL(R) 974P - 13,4
Дигидрат цитрата натрия - 13,3
Лактоза водная (высушенная распылением) - 13,3
Povidone (K29-32) - 3
Всего - 63,0
Ингредиент объединяют и тщательно смешивают в ступке с помощью пестика, затем гранулируют смесью 90% спирт: 10% вода по объему. Эту влажную массу пропускают через N 20 сито из нержавеющей стали и сушат в течение ночи при 40oC. Полученную смесь прессуют в таблетки, используя 1/4 дюймовые стандартные вогнутые пуансоны. Таблетки прессуют до толщины 2,33 мм и твердости 9 кг. На таблетки наносят покрытие толщиной 250 микрон следующей рецептуры, используя машину для нанесения покрытий Freund(R) Model HCT-Mini Hi-Coater (8-дюймовая ванна). Ингредиент - Количество
Бутират ацетат целлюлозы
САВ 381-20 - 64 г
Ацетат целлюлозы
СА 435-75 - 16 г
Метиленхлорид - 3000 мл
Метанол - 1000 мл
Диэтилфталат - 8 г
Испытания in vitro освобождения проводили при 37oC в фосфатном буфере с pH 7, 4, содержащем 0,2% додецилсульфата магния, при 50 об/мин, используя UPS Apparatus 2. Выделяемый лекарственный препарат контролировали при помощи проточной УФ спектрофотометрии. Результаты по освобождению лекарственного препарата из таблеток с покрытием с круглыми отверстиями диаметром 1,75 мм, просверленными на поверхности каждой таблетки, представлены на фиг. 4. Пример 7
Таблетки симвастатина получают из следующей рецептуры:
Ингредиент - Количество
Симвастатин - 40
CAPBOPOL(R) 974P - 26,7
Дигидрат цитрата натрия (измельченный до 100-200 меш) - 26,7
Ингредиенты - мг/таблетка
Лактоза водная NF (высушенная распылением) - 26,6
Povidone USP (K29-32) - 6,0
Бутилированный гидроксианизол (БГА) NF - 0,04
Стеарат магния NF - 0,6
Всего - 126,64
Симвастатин, CARBOPOL(R) измельченный цитрат натрия, лактозу и поливинилпирролидон объединяют, тщательно смешивают и гранулируют в смеси с 10% содержанием воды по весу в спирте, содержащем требуемый БГА. Влажную массу продавливают через N 18 меш сито и сушат на протяжении ночи. Высушенную грануляцию замасливают стеаратом магния, и гомогенизированную смесь подвергают прессованию, используя 1/4 дюймов стандартное вогнутое круглое приспособление. Спрессованные таблетки имеют толщину 3,89 мм и твердость 10 кг. На таблетки наносят покрытие распылением толщиной 100 микрон с помощью машины для нанесения покрытий Freund(R) HCT-Min4i Hi-Coater (8-дюймовая ванная), используя следующую рецептуру для покрытия:
Ингредиент - Количество
Бутират ацетат целлюлозы CAB 381-20 - 80 г
Триэтил цитрат - 16 г
Ацетон - 3000 мл
Метанол - 1000 мл
Испытания in vitro освобождения проводили при 37oC в фосфатном буфере с pH 7,4, содержащем 6,4% по весу додецилсульфата натрия, при 50 об/мин, используя USP Apparatus 2. Выделяемый лекарственный препарат контролировали с помощью проточной УФ спектрофотометрии. Результаты для таблеток с одним круглым отверстием диаметром 2,8 нм на поверхности таблетки представлены на фиг. 5. Пример 8
Таблетки для контролируемого выделения ловастатина получают из следующей рецептуры:
Ингредиент - мг/таблетка
Ловастатин - 40
CARBORAL(R) 974P NF - 16
Цитрат натрия USP (дигидрат) - 32
Ингредиенты - мг/таблетка
Лактоза водная NF (высушенная распылением) - 16
Povidone USP (K29-32) - 5,2
Бутилированный гидроксианизол NF - 0,04
Стеарат магния NF - 0,55
Всего - 109,79
Гранулированный дигидрат цитрат натрия измельчают до такого размера частиц, чтобы 90% по весу прошло через N 120 меш сито. Измельченный дигидрат цитрат натрия объединяют с ловастатином, CARBORAL(R), лактозой и поливинилпирролидоном, тщательно смешивают и затем гранулируют, используя спирт USP. Сольватированную массу пропускают через 10 сито, и затем сушат на протяжении ночи при 50oC. Высушенную грануляцию измельчают, затем замасливают стеаратом магния. Гомогенизированную смесь спрессовывают в таблетки, используя 1/4 дюймовую стандартную вогнутую насадку. Таблетки прессуют до толщины 3,45 мм и твердости 10,5 кг. На таблетки наносят покрытие толщиной 100 микрон, используя следующую рецептуру для покрытия и Glatt WSG-3 машину для покрытия распылением в колонне с псевдоожиженным слоем. Ингредиент - Количество
Бутират ацетат целлюлозы CAB 381-20 - 80 г
Триэтил цитрат NF - 16 г
Ацетон NF - 3000 мл
Спирт USP - 1000 мл
Испытания in vitro выделения проводили, как описано в примере 7, для таблеток с тремя просверленными круглыми отверстиями диаметром 1,5 мм на поверхности каждой таблетки. Результаты представлены на фиг. 6. Пример 9
Таблетки для контролируемого освобождения ацетаминофена получают согласно следующей рецептуре:
Ингредиент - мг/таблетка
Ацетаминофен - 20
CARBORAL(R) 974P - 10
Цитрат натрия дигидрат - 20
Лактоза водная (высушенная распылением) - 10
Povidone (K29-32) - 3
Всего - 63
Вышеупомянутые ингредиенты объединяют, тщательно смешивают и затем гранулируют со спиртом. Сольватированную массу пропускают через N 20 меш сито и сушат в течение ночи при 40oC. Высушенный гранулят прессуют в таблетки, используя 1/4 дюймовую стандартную вогнутую насадку. Таблетки прессуют толщиной 2,31 мм и твердостью 6 - 7 мг. Таблетки покрывают как в примере 6. Испытания in vitro выделения проводят при 37oC, используя USP Прибор 2, в фосфатном буфере при pH 7,4 со скоростью 50 об/мин. Выделяемый лекарственный препарат контролируют с помощью проточной УФ спектрофотометрии. Результаты для таблеток с одним круглым отверстием диаметром 2,75 мм представлены на фиг. 7. Пример 10
Ядра таблеток, содержащие ловастатин, CARBOPOL 974P тринатрий цитрат и лактозу в соотношениях 5 : 2 : 4 : 2, получают, используя методику, описанную в примере 8. На поверхности каждой покрытой таблетки просверливают различное число отверстий с помощью DIGIMARK (TM) цифровой лазерной маркирующей системы. Каждое отверстие составляло около 0,23 мм в диаметре, измеренного с помощью анализатора микроскопического изображения Analitical Imaging Concepts IM 4000. In vitro тесты по освобождению проводят при 37oC, используя USP Apparatus 2, в фосфатном буфере с pH 7,4, содержащем 0,2% додецилсульфата натрия, при 50 об/мин. Выделяемое лекарственное средство контролировали с помощью проточной УФ, спектрофотометрии. Результаты исследования представлены в табл. 1. Пример 11
Двадцать четыре (24) отверстия диаметром 0,35 мм просверливают на поверхности каждой покрытой таблетки, полученной для исследования в примере 10, с помощью DIGIMARK (TM) цифровой лазерной маркирующей системы. Отверстия измеряют с помощью анализатора микроскопического изображения Analitical Imaging Concepts IM 4000. Скорости выделения излучают, как в примере 1. Результаты даны в табл. 2.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8