Способ выплавки стали в конвертере
Настоящее изобретение относится к области металлургии, конкретнее к производству стали в кислородных конвертерах. Способ включает в себя завалку лома, заливку чугуна, продувку металла кислородом (ПМ). В период возраста футеровки менее 25 % компании начинают ПМ кислородом при положении фурмы относительно спокойной ванны 50-56 калибров и давлении кислородной струи на металл 4,7-7 ГПа. Через 3-6 % времени продувки давление кислородной (ДК) струи увеличивается. И далее ДК увеличивается каждые 1-3 % времени продувки по формуле D = 0,0153
2,2715 + 13,075, где
D - величина увеличения давления по отношению к предыдущему значению, %;
- время кислородной продувки. После израсходования кислорода 8-12 м3/т фурму устанавливают в рабочее положение. Способ позволяет увеличить выход металла, стойкость футеровки и производительность конвертеров, снизить расход, легирующих раскислителей, а также чугуна. 1 табл.
Изобретение относится к черной металлургии, конкретнее к производству стали в кислородных конвертерах, и может быть использовано при переделе низкомарганцовистого чугуна в конвертерах с ограниченным внутренним объемом, например, после выхода конвертера с "холодного" ремонта при полной замене его рабочей футеровки.
Известен способ производства стали в кислородом конвертере, включающий завалку скрапа, заливку чугуна, присадку извести, плавикового шпата, марганцевой руды и продувку ванны кислородом, при осуществлении которого известь и плавиковый шпат вводят последовательно порциями по ходу продувки, а марганцевую руду присаживают по истечении 2/3 длительности и не позже чем за 4 мин до окончания продувки в количестве, определяемом заданным содержанием марганца в конечном металле. (Авторское свидетельство СССР N 293441, кл. C 21 C 5/28). Недостатком способа является неудовлетворительное шлакообразование в первом периоде плавки, особенно при переделе низкомарганцовистого чугуна, в результате чего наблюдается повышенные вынос капель металла, что приводит к снижению выхода металла и сильному заметалливанию кислородных фурм и кессонов. Известен способ передела низкомарганцовистого чугуна с содержанием марганца менее 0,3% в конвертере, включающий завалку скрапа, присадку марганецсодержащего материала в завалку в количестве 70-80% от его общего расхода, заливку чугуна, присадку извести, разжижителей, продувку ванны кислородом, присадка остальной части марганецсодержащего материала по истечении 50-60% длительности продувки. Недостатком данного способа является повышенный расход чугуна, т.к. для нагрева и расплавления присаживаемого марганецсодержащего материала затрачивается значительное количество тепла. Кроме того, данный способ требует наличия специальных складов и бункеров для хранения и использования марганецсодержащих материалов, что приводит к повышению себестоимости стали. Известен способ выплавки стали в кислородом конвертере, включающий присадку извести на дно конвертера в количестве 40-50% от суммарного ее расхода на плавку, завалку лома, заливку чугуна, продувку металла кислородом в первые 10-15% времени с расстояния 65-75 приведенных калибров фурмы от уровня спокойной ванны, в последующие 15-30% времени от начала продувки ее ведут с расстояния 35-40 приведенных калибров, присаживают твердое топливо в количестве 0,5-3,5% от массы металлошихты в последующие 30-60% времени от начала продувки и продувка в этот период ведут с расстояния 65-75 приведенных калибров, после чего продолжают продувку с расстояния 35-40 приведенных калибров до конца плавки. (Авторское свидетельство СССР N 1298256, C 21 C 5/28, 1985). Недостатком данного способа является низкая стойкость футеровки горловины конвертера, т.к. формирование первичного шлака осуществляется в процессе кислородной продувки при длительном нахождении кислородной фурмы в зоне горловины конвертера и верхней части цилиндрической футеровки конвертера, в результате чего футеровка подвергается негативному прямому влиянию высокотемпературного факела и кислородных струй. Кроме того, данный способ приводит к снижению выхода металла и стойкости цилиндрической футеровки конвертера вследствие того, что кислородная продувка в течение всей плавки ведется при более высоком положении фурмы относительно уровня спокойной ванны и повышенной окисленности шлака, что подтверждается данными в описании примеров осуществления способа. Повышенное положение кислородной фурмы в процессе всей продувки и отсутствие регламентированных пределов по интенсивности кислородной продувки приводят часто к перекислению шлака и выбросам, переливам через горловину шлакометаллической эмульсии, что существенно снижает выход металла. Наиболее близким к предполагаемому изобретению по технической сущности и достигаемому результату является способ конвертерной плавки, включающий завалку лома, заливку чугуна, продувку металла кислородом в первые 15-20% времени продувки при высоте фурмы над уровнем металла 50-80 калибров, в остальное время 15-30 калибров, а интенсивность продувки во втором и третьем периоде плавки снижают на 20-30% и 10-18% от первоначальной. (Авторское свидетельство СССР N 990826, C 21 C 5/32, 1981). Недостатком данного способа является низкая стойкость футеровки конвертеров, вследствие того, что формирование первичного шлака осуществляется при очень высоком положении фурмы относительно уровня ванны. В результате этого снижается стойкость футеровки горловины и верхней части цилиндрической футеровки конвертера из-за прямого агрессивного влияния высокотемпературного факела и кислородных струй. Недостатком данного способа является также низкий выход металла, заметалливание кислородных фурм и кессона из-за неудовлетворительного формирования первичного шлака, выбросов металла и переливов через горловину шлакометаллической эмульсии. Это происходит вследствие того, что при регламентированном положении кислородной фурмы относительно уровня ванны отсутствуют регламентированные пределы по интенсивности кислородной продувки. В описании сущности изобретения описывается, что 30% от общего времени продувки - продувку ведут с допустимым расходом кислорода, определяемым пропускной способностью газоотводящего тракта. Однако, сама кислородная фурма представляет собой устройство, конструкция которой при подаче через нее кислорода "работает" в определенных пределах истечения кислорода, нарушение нижнего предела которого, обычно, приводит к прогару фурмы, а при нарушении верхнего предела, происходит срыв кислородных шлангов из-за ограниченной пропускной способности фурмы. Поэтому описанная в прототипе технология продувки в первый период плавки с расходом кислорода, определяемым пропускной способностью газоотводящего тракта, на практике конвертерного производства обычно не используется из-за недостаточной обеспеченности фурм конструктивно по их пропускной способности и высокой сложности управления ведения плавки при очень высоких интенсивностях кислорода. В связи с этим, можно признать, что в прототипе формирование первичного шлака в практике конвертерного производства осуществляется с максимальной интенсивностью кислородной продувки, являющейся предельной для конструкции используемой фурмы. Снижение положения фурмы по истечении 15% времени продувки более чем в 3 раза (с 50-80 до 15 калибров) приводит часто к ударам фурмы о лом, выводу фурмы из строя и создания аварийной ситуации на конвертере. Кроме этого, резкое опускание фурмы приводит к образованию большого количества капель металла большого диаметра, образующихся от удара кислородной струи о жидкий металл и попадающих в шлак. В связи с тем, что капли металла имеют высокое содержание углерода, это при взаимодействии с высокоокисленным шлаком приводит к его вспениванию, а в период интенсивного окисления углерода к выбросам металла и шлака из конвертера, что снижает выход металла, приводит к вынужденному аварийному прекращению продувки и скачиванию шлака. Это влечет за собой снижение температуры металла, додувкам, повышенному расходу раскислителей и легирующих, увеличивает цикл плавки и снижает производительность конвертеров и стойкость футеровки. Технический результат предполагаемого изобретения заключается в увеличении выхода металла, стойкости футеровки и производительности конвертеров, снижение расхода легирующих и раскислителей, а также чугуна. Указанный технический результат достигается тем, что в способе выплавки стали в конвертере, включающем завалку лома, заливку чугуна, продувку металла кислородом с переменным положением фурмы и интенсивностью кислородной продувки, согласно предполагаемого изобретения, в период возраста футеровки конвертера менее 25% компании продувку металла кислородом начинают при положении фурмы относительно уровня спокойной ванны 50-55 калибров и осуществляют в первые 3-6% времени продувки при давлении кислородной струи на металл 4,7-7 ГПа, дальнейшая продувка осуществляется с увеличением давления кислородной струи через каждые 1-3% времени продувки по формуле













через каждые 1-3% времени продувки. Увеличение давления кислородной струи менее чем через 1% времени продувки приводило к увеличению выбросов шлака на продувке, снижению выхода металла, повышенному расходу раскислителей и легирующих, увеличению цикла плавки. Увеличение давления кислородной струи более чем через 3% времени продувки приводило к увеличению времени формирования первичного шлака, что снижало выход металла из-за повышенного брызгоуноса. Вывод кислородной фурмы на рабочее положение наиболее целесообразно осуществлять после израсходования кислорода 8-12 м3/т стали. Вывод фурмы на рабочее положение при израсходовании кислорода менее 8 м3/т приводило к снижению выхода металла и повышению расхода плавикового шпата из-за недостаточного количества шлака, и, как следствие этого, увеличения брызгоуноса металла. Вывод фурмы на рабочее положение при израсходовании кислорода более 12 м3/т приводило к снижению выхода металла из-за повышенного количества шлака. Для оценки данного способа была проведена серия опытных плавок в соответствии с заявляемым предложением и прототипом. Пример осуществления предлагаемого способа (пример N 1, табл. 1). В 350-т конвертер при его возрасте футеровки 70 плавок (10% от общей стойкости) завалили 115 т лома, присадали 11 т извести, залили 285 т чугуна с температурой 1400oC, содержащего в процентах: 4,8 углерода, 0,75 кремния, 0,25 марганца, 0,055 фосфора, 0,22 серы. Расчет материально-теплового баланса плавки на ЭВМ показал, что для обеспечения получения металла с заданным содержанием углерода и температуры металла на повалке при основности шлака 3,0 необходимо затратить 20000 м3 кислорода. Установили фурму на высоте 50 калибров от уровня спокойной ванны, осуществили подачу кислорода с интенсивностью 1200 м3/мин в первые 4% времени продувки при давлении кислородной струи на металл 6,2 ГПа. Изменение положения фурмы и интенсивности кислородной продувки осуществлялось в режиме УВМ АСУ ТП "Плавка" с расчетом в режиме OH-лайт давления кислородной струи на металл. Расчет давления осуществлялся по формуле

где
P - давление струи на металл, ГПа;

H - положение фурмы относительно уровня металла, м;
K - коэффициент, зависящий от конструкции фурмы. Определение K осуществлялось по формуле
K = 3,5



где m - число сопел фурмы;
dкр - диаметр критического сопла
Изменяя в ходе плавки положение фурмы и интенсивность подачи кислорода осуществляли продувку, увеличивая через каждые 2% времени давление струи кислорода на величину, определяемую в процентах от предыдущего значения строго по формуле



На второй, третьей и пятой минуте продувки в конвертер присадили 8 т извести по 2 т и 0,3 т плавикового шпата. Выход на рабочее положение (25 калибров) фурмы осуществили после израсходования 3650 м3 кислорода, что составило 10 м3/т стали. Дальнейшую продувку плавки кислородом осуществляли по обычной существующей в цехе технологии без выбросов и переливов шлакометаллической эмульсии. После израсходования 20000 м3 кислорода кислородную продувку плавки прекратили. После повалки конвертера отобрали пробы металла и шлака, замерили температуру металла. Температура металла - 1650oC, что соответствовала заданной, содержание углерода - 0,07%. Слили 3сп, присадив 1,9 т силикомарганца; 0,6 т кокса; 0,7 ферросилиция. Пример осуществления известного способа (прототипа) (пример 1 прототипа, табл.1). В 350-т конвертер при его возрасте футеровки 70 плавок (10% от общей стойкости) завалили 115 т лома, присадили 11 т извести, залили 280 т чугуна с температурой 1400oC, содержащего в процентах: 4,8 углерода, 0,75 кремния, 0,25 марганца, 0,055 фосфора, 0,022 серы. Расчет материально-теплового баланса плавки на ЭВМ АСУ ТП "Плавка" показал, что для обеспечения получения металла с заданным содержанием углерода и температуры металла на повалке при основности шлака 3,0, необходимо затратить 19000 м3 кислорода. Установили фурму на высоте 50 калибров от уровня спокойной ванны, осуществили подачу кислорода с максимальной интенсивностью для данной конструкции фурмы - 1320 м3/мин. Продули так 3800 м3 кислорода (20% времени продувки). После этого одновременно опустили фурму в положение 25 калибров (рабочее положение фурмы) и снизили интенсивность продувки до 1055 м3/мин (снижение интенсивности продувки-20% от первоначальной). На второй, третьей и пятой минуте продувки в конвертер присадили 8 т извести по 2 т и 0,3 плавикового шпата. После израсходования 9300 м3 кислорода из конвертера произошел выброс металла и шлака с последующим увеличением интенсивности и частоты выбросов. Аварийно прекратили кислородную продувку, скачали шлак. После возобновления продувки плавку проводили при положении фурмы 25 калибров, после израсходования 13700м3 кислорода положение фурмы снизили до 21 калибров, установив интенсивность продувки 1190 м3/мин (снижение на 10% от первоначальной). После израсходования 19000 м3 кислорода кислородную продувку плавки прекратили. Температура металла после продувки составила 1630oC при содержании углерода 0,07% и окисленности шлака 18%. Однако плавка оказалась "холодной" на 20oC, вследствие скачивания шлака. Для исправления плавки по температуре ее додули, израсходовав 680 м3 кислорода. После додувки температура металла составила 1650oC, содержание углерода - 0,04%, содержание (FeO) - 25%. Слив плавки 3 сп осуществили присадив 1 т коксика; 2,2 силикомарганца, и 0,85 т ферросилиция. Результаты опытных плавок в 350-т конвертере, в соответствии с заявляемым способом выплавки стали в конвертере, а так же плавки в соответствии с технологией прототипа, приведены в таблице. 1. Сравнительный анализ двух способов показал, что осуществление предлагаемой технологии с соблюдением последовательности технологических операций и заявляемых технологических параметров обеспечивало, эффективное управление процессом шлакообразования и достижения высоких показателей конечных технологических параметров плавки, что приводило к увеличению выхода жидкого металла на 0,3%, сокращению цикла плавки на 10 минут, снижению скорости износа футеровки конвертера на 10%, снижение расхода кислорода на продувку на 1%, расхода силикомарганца на 0,25 кг/т, ферросилиция на 0,15 кг/т, коксика на 0,3 кг/т, алюминия на 0,03 кг/т.
Формула изобретения



где


с выходом на рабочее положение фурмы после израсходования кислорода 8 - 12 м3/т.
РИСУНКИ
Рисунок 1