Способ дезактивации внутренних поверхностей оборудования ядерного реактора
Изобретение относится к ядерной энергетике, а именно способам дезактивации, и может быть использовано при удалении продуктов коррозии с внутренних поверхностей оборудования контуров ядерных энергетических установок, например контуров многократной принудительной циркуляции кипящих реакторов. Сущность изобретения состоит в том, что в способе дезактивации внутренних поверхностей оборудования ядерного реактора путем обработки его растворами на основе щавелевой кислоты в две стадии предлагается на второй стадии обработку вести разбавленным раствором щавелевой кислоты, содержащим нитрит-ион, а нитрит-ион вводить в разбавленный раствор щавелевой кислоты в виде соли азотистой кислоты при следующих концентрациях компонентов: 0,01 - 0,1 г/л щавелевой кислоты, 0,015 - 0,1 г/л соли азотистой кислоты, а дезактивацию вести в течение 3 - 5 ч при температуре 85 - 100°С. Добавка нитрит-ионов приводит к удалению вторичных отложений оксалата двухвалентного железа и к одновременному образованию на поверхностях сталей оксидной пленки, защищающей металл от коррозии, вследствие этого коррозионные потери в процессе обработки в 2 - 2,5 раза ниже, стальные поверхности пассивируются и коррозионная стойкость сталей в период эксплуатации повышается. 1 з.п. ф-лы, 1 табл., 4 ил.
Изобретение относится к ядерной энергетике, а именно способам дезактивации, и может быть использовано при удалении продуктов коррозии с внутренних поверхностей оборудования ядерных энергетических установок, например, контуров многократной принудительной циркуляции кипящих реакторов.
Процесс удаления отложений на внутренних поверхностях оборудования ядерного реактора сводится, как правило, к растворению их составами на основе органических и минеральных кислот. Поскольку основными компонентами этих отложений являются оксиды железа, в состав растворов входит щавелевая кислота, наиболее эффективно растворяющая эти оксиды [1]. Особенностью процесса удаления отложении с поверхности радиоактивного оборудования является то, что он протекает в присутствии гамма-излучения, вызывающего отрицательные последствия - вторичное осадкообразование за счет восстановления ионов трехвалентного железа в двухвалентное состояние. Другими источниками поступления двухвалентного железа являются коррозия сталей и наличие на поверхностях оборудования оксидов, содержащих двухвалентное железо (магнетита и его модификаций с легирующими элементами нержавеющей стали). Кроме того, во всех случаях в процессе обработки на поверхности углеродистой стали образуются радиоактивные отложения оксалата двухвалентного железа [2]. Наиболее эффективно оксалатные отложения растворяются в присутствии перекиси водорода. Эффективность растворения железоокисных отложений повышается, если обработку производить в две стадии: раствором щавелевой кислоты при pH = 2,5, а затем вводить перекись водорода до содержания в растворе 3-4 г/л [3]. Недостатками указанного способа являются: - значительное газовыделение на стадии ввода перекиси водорода из-за окисления щавелевой кислоты, приводящее к выбросу летучих радионуклидов из раствора; - высокие коррозионные потери углеродистой стали и цветных металлов; - химическая активация металла при обработке перекисью водорода, поскольку вместе с отложениями с поверхности в раствор переходят пассивные оксидные пленки. Известно также авторское свидетельство N 96451 на "Способ предохранения изделий из черных металлов от коррозии покрытием поверхностей этих изделий раствором нитрита натрия", в котором решается задача по пассивации поверхности путем нанесения окисной пленки Fe3O4. Однако без предварительной подготовки поверхности покрытие получается низкого качества. Ближайшим аналогом является способ дезактивации внутренних поверхностей контурного оборудования, заключающийся в обработке в две стадии [4]: - на I стадии обрабатывают щавелевокислым раствором (5-10 г/л), содержащим акцепторы продуктов радиолиза воды, например, нитрат-ионы; - на II стадии обрабатывают разбавленным щавелевокислым раствором с добавлением перекиси водорода до содержания 0,3-0,4 г/л. За счет подавления восстановления трехвалентного железа снижается вторичное осадкообразование, что позволяет снизить в 10 раз количество вводимой на второй стадии обработки перекиси водорода - с 3-4 г/л до 0,3-0,4 г/л. Вследствие такого способа обработки уменьшается газообразование на стадии ввода перекиси водорода, а коррозионные потери углеродистой стали и цветных металлов уменьшаются в 5-6 раз. Недостатками способа являются: - значительные коррозионные потери углеродистой стали и цветных металлов: - химическая активация металла при обработке перекисью водорода, что приводит к депассивации (интенсивной коррозии) оборудования в первоначальный момент после проведения дезактивации. Задача, решаемая изобретением, заключается в снижении коррозионных потерь конструкционных материалов в процессе дезактивации с одновременной их пассивацией. Сущность изобретения состоит в том, что в способе дезактивации внутренних поверхностей оборудования ядерного реактора путем обработки его растворами на основе щавелевой кислоты в две стадии, предлагается на второй стадии обработку вести разбавленным раствором щавелевой кислоты, содержащим нитрит-ион, причем нитрит-ион вводить в разбавленный раствор щавелевой кислоты в виде соли азотистой кислоты при следующих концентрациях компонентов: 0,01-0,1 г/л щавелевой кислоты, 0,015-0,1 г/л соли азотистой кислоты, а дезактивацию вести в течение 3-5 часов при температуре 85-100oC. Примеры конкретного использования: Пример 1. Приведен для обоснования концентрации щавелевой кислоты на второй стадии обработки и концентрации нитрит-иона. Образцы Ст20 и 08Х18Н10Т на первой стадии обрабатывали в растворе 10 г/л H2C2O4+2,5 г/л KNO3 при 95oC в течение 25 ч, а на второй стадии обрабатывали в растворе с разбавлением. В разбавленные растворы добавляли нитрит калия нужной концентрации и обработку продолжали при той же температуре в течение 4 ч. Соотношение объема раствора к поверхности образцов составляло: для Ст - 300 мл/см2, для 08Х18Н10Т - 1 мл/см2. После обработки образцы промывали обессoленной водой, высушивали, взвешивали и ставили на коррозионные испытания в обессоленную воду. Время выдержки составляло 5 суток при температуре 20


- десятикратное разбавление раствора и добавление 0,3 г/л H2O2, T = 70-75oC,

- обработка раствором 10 г/л H2C2O4+2 г/л KNO3, T = 90-95oC,

- стократное разбавление раствора и добавление 50 мг/л KNO2, T = 95-100oC,


- Кд по наиболее близкому аналогу равнялся 9,3

- Кд по предлагаемому способу равнялся 9,2

т. е. эффективность дезактивации по предлагаемому способу и по наиболее близкому аналогу одинаковая. По предлагаемому способу добавка нитрит-ионов приводит к удалению вторичных отложений оксалата двухвалентного железа и к одновременному образованию на поверхностях сталей оксидной пленки, защищающей металл от коррозии, вследствие этого коррозионные потери в процессе обработки в 2-2,5 раза ниже, стальные поверхности пассивируются и коррозионная стойкость сталей в период эксплуатации повышается (в первоначальный период в 10 раз). Источники информации. 1. Нестеренко А.П. и др. "Кинетика растворения оксидов железа и расчет ионных равновесий в дезактивирующих растворах". Препринт ВНИПИЭТ 87 - 3, М.: ЦНИИАТОМИНФОРМ. 1987 г. 2. Ампелогова Н. И. и др. "Дезактивация в ядерной энергетике". - М.: Энергоиздат, 1982 г., с. 130, 256. 3. Седов В.М., Константинов Е.А., Филиппов Е.М. Использование перекиси водорода для растворения оксалатных отложений, образующиеся при дезактивации энергетических установок щавелевокислыми растворами. - В кн. "Исследование по химии, технологии и применению радиоактивных веществ". - Л.: ЛГИ им. Ленсовета. 4. Седов В.М., Сенин Е.В., Нестеренко А.П., Захарова Е.В. "Дезактивация АЭС". , Атомная энергия, 1988. Т. 65, выпуск 6, с. 399 (наиболее близкий аналог). 5. Алексеев Р.И., Коровин Ю.И., "Руководство по вычислению и обработке результатов количественного анализа". - М.: Атомиздат, 1972.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5