Ракета
Изобретение относится к области военной техники, а именно ракетам с газодинамической системой управления (стабилизации), и может быть использовано при разработке реактивных снарядов систем залпового огня. Ракета содержит цилиндрический корпус с передней конической частью, ракетный двигатель, хвостовое оперение и газодинамическую систему угловой стабилизации с соплами. Сопла выполнены на цилиндрическом корпусе с удалением от передней конической части, равным (0,1 -0,15) Lк, где Lк - длина конической части ракеты, причем площадь поперечного сечения сопла газодинамической системы угловой стабилизации составляет (0,008 - 0,017)
Sм, где Sм - площадь Миделя ракеты, а длина конической части составляет 2,3 - 2,5 диаметра цилиндрической части корпуса ракеты. Изобретение позволяет создать ракету со стабильными характеристиками газодинамической системы стабилизации и высокой точностью поражения цели. 1 ил.
Изобретение относится к военной технике, а именно ракетам с газодинамической системой стабилизации и может быть использовано при разработке реактивных снарядов систем залпового огня.
Для борьбы с наземными целями в настоящее время широко применяются реактивные системы залпового огня (см. например, Регентов М.Л., Реактивные системы залпового огня, Зарубежное военное обозрение, N 2, 1987 г., с. 28-33). В состав такой системы входят реактивные снаряды (ракеты), снабженные моноблочной или кассетной боевой частью, ракетным двигателем и хвостовым оперением. Так, известные неуправляемые ракетные снаряды М8 и М13, обеспечивающие поражение площадных целей (см., например, Куров В.Д., Должанский Ю.М., Основы проектирования пороховых ракетных снарядов. - М.: Оборонгиз, 1961, с. 11, фиг. 1.7), принятые за аналоги. Они содержат цилиндрический корпус с конической передней частью и хвостовое оперение. Их конструкция проста и достаточно надежна. В то же время достигнутые для этих снарядов характеристики кучности и точности стрельбы не обеспечивают достаточно эффективного поражения целей. Таким образом, задачей данного технического решения являлось обеспечение кучности и точности стрельбы при достаточно высокой надежности и простоте конструкции. Общими признаками с предлагаемой авторами ракетой являются цилиндрический корпус с передней конической частью и хвостовое оперение. В настоящее время направлением развития РСЗО являются увеличения дальности при одновременном повышении кучности и точности стрельбы реактивными снарядами. Увеличение дальности стрельбы осуществляется путем увеличения калибра ракеты и применением в двигателе высокоэнергетических топлив. Для повышения кучности и, следовательно, эффективности стрельбы, широкое применение нашли различные системы закрутки и поворота ракеты, позволяющие осреднить эксцентриситет реактивной тяги двигателя и аэродинамический эксцентриситет ракеты в целом. Кроме того, для повышения точности и кучности стрельбы путем снижения чувствительности ракеты к ветровым и начальным возмущениям в ракетах применяются различные устройства, например, устройства задержки раскрытия оперения для снижения ветровой чувствительности ракеты, а также различные виды систем стабилизации ракеты на начальном участке траектории. Наиболее близкой по технической сути и достигаемому техническому результату является ракета, снабженная газодинамической системой угловой стабилизации с соплами, расположенными в передней части ракеты, по патенту России N 2071027, опубликованному 27.12.96 г., принятая за прототип. Она содержит цилиндрический корпус с передней конической частью, хвостовое оперение, ракетный двигатель и газодинамическую систему угловой стабилизации с соплами. Ракета, принятая за прототип, функционирует следующим образом. При старте одновременно с ракетным двигателем запускаются газогенератор системы угловой стабилизации. За счет взаимодействия ведущего штифта ракеты с винтовым пазом направляющей осуществляется ее начальная закрутка, поддерживаемая на траектории косо поставленными лопастями хвостового оперения. За счет истечения продуктов сгорания газогенератора блока системы угловой стабилизации из сопел по нормали к продольной оси ракеты создается управляющие усилие, направление действия которой противоположно направлению действия возмущающей силы. Чувствительность отклонения ракеты от заданной траектории под действием начальных и ветровых возмущений снижается, что приводит к повышению точностных характеристики и эффективности стрельбы ракетой с газодинамической системой угловой стабилизации по сравнению с неуправляемыми ракетами. Задачей данного технического решения (прототипа) являлось обеспечение кучности и точности стрельбы за счет использования газодинамической системы угловой стабилизации. Однако, как показали экспериментальные исследования, эффект от применения газодинамической системы угловой стабилизации уменьшается на ракетах с дальностями стрельбы более 50 км из-за увеличения скоростей ее полета и усиления влияния скачков уплотнения набегающего потока воздуха. При взаимодействии струи газа с воздушным набегающим потоком в районе сопла образуются дополнительные скачки уплотнения. Взаимное влияние скачков уплотнения, образующихся на передней конической части и перед выдуваемой струей газа, деформируют структуру обтекания ракеты и приводят к изменению величины и нестабильности управляющего усилия системы угловой стабилизации (см., например, Краснов Н. Ф., Кошевой В.Н., Управление и стабилизация в аэродинамике. -М., "Высшая школа", 1978, с. 337-340, 360-362). Данное явление отрицательно сказывается на стабильности точностных характеристики стрельбы ракетой-прототипом. Общим признаками с предлагаемой ракетой является наличие в ракете-прототипе цилиндрического корпуса с конической передней частью, ракетного двигателя, хвостового оперения и газодинамической системы угловой стабилизации с соплами. В отличие от прототипа, в предлагаемой ракете сопла выполнены на цилиндрическом корпусе с удалением от передней конической части, равным (0.1.. .0.15)






Формула изобретения
Ракета, содержащая цилиндрический корпус с передней конической частью, ракетный двигатель, хвостовое оперение и газодинамическую систему угловой стабилизации с соплами, отличающаяся тем, что сопла в ней выполнены на цилиндрическом корпусе с удалением от передней конической части, равным (0,1-0,15) Lк, где Lк - длина конической части ракеты, причем площадь поперечного сечения сопла газодинамической системы угловой стабилизации составляет (0,008-0,017)
РИСУНКИ
Рисунок 1