Способ и устройство для идентификации комплекса теплофизических свойств твердых материалов
Изобретение относится к технической физике, а именно к области исследований теплофизических свойств веществ. Технический результат - повышение диапазона и точности измерения теплофизических свойств материалов. Способ включает воздействие тепловыми импульсами от линейного источника на плоскую поверхность исследуемого и эталонного образцов, измерение избыточных температур в моменты подачи тепловых импульсов в точках, расположенных на фиксированных расстояниях от линии нагрева на поверхности образцов. Измерение температуры приближают с минимальной погрешностью к рассчитанным температурам, формируемых посредством программного управления параметрами теплофизических характеристик. По идентифицированным параметрам образцов и действительным значениям характеристик эталона определяют искомые характеристики. Устройство содержит последовательно включенные демультиплексор, управляемый блок питания, измерительный зонд, усилитель постоянного тока, аналого-импульсный преобразователь, программируемые таймеры, регистр и селектор адреса. Выходная шина селектора адреса подключена к адресным входам демультиплексора, первого и второго программируемых таймеров и регистра, соединенного первым и вторым входами соответственно с синхронизирующим входом и выходом первого программируемого таймера. Управляющий вход первого таймера объединен одноименной шиной с соответствующими входами второго программируемого таймера, селектора адреса регистра и выходом микроЭВМ. Адресный выход микроЭВМ через одноименную шину связан с соответствующим входом селектора адреса, а вход-выход данных микроЭВМ подключен через одноименную шину к соответствующим входу демультиплексора и выходу регистра. 2 с. п. ф-лы, 4 табл., 2 ил.
Изобретение относится к технической физике, а именно к области исследований теплофизических свойств веществ.
Известен способ определения теплофизических характеристик материалов [авт. св. СССР N 1608535, кл.G 01 N 25/18, 1990], аключающийся в воздействии на поверхность эталонного и испытуемого образцов одинаковым числом тепловых импульсов и регистрации временного интервала между подачей последнего импульса и моментом достижения максимума температуры. Недостатком данного способа является невозможность точного определения времени наступления максимума температуры, причем диапазон изменения интервала времени сопоставим с этой точностью. При этом данный способ имеет относительно низкое быстродействие, т.к. для снижения погрешности определения максимума требуется увеличение числа тепловых импульсов. Известно также устройство для определения ТФХ- материалов [авт.св. СССР N 1236355 СССР, кл. G 01 N 25/18, 1986], которое содержит зонд-термоприемник в виде материала с известными теплофизическими характеристиками, на контактной поверхности зонда смонтированы линейный проволочный нагреватель и две термопары на расстоянии x1 и x2 от линии действия нагревателя, третья термопара расположенная внутри материала термозонда на расстоянии x3 от линии действия нагревателя, аналого-цифровой преобразователь, блок электропитания, микропроцессор, блок ввода-вывода, управляемые делители частоты, делитель частоты и элемент 2И-НЕ. Недостатком этого устройства является жесткая структура, обусловленная организацией числоимпульсного сенсорного генератора с узкой специализацией контроля ТФХ по трем каналам. Все это не позволяет осуществлять идентификацию ТФХ с заданной степенью точности. За прототип принят способ контроля теплофизических характеристик теплоизоляционных материалов [авт. св. СССР N 1711052, кл. G 01 N 25/18, 1992], включающий линейный нагрев поверхностей эталонного и исследуемого образцов импульсами с периодом, равным времени тепловой релаксации образца с нормированными характеристиками, и определение количества тепловых импульсов, за которое достигается заданная температура на эталоне и исследуемых материалах, по которым рассчитывают искомые характеристики. Устройство, взятое за прототип [авт. св. СССР N 1298713, кл. G 01 N 25/18, 1987] , состоит из измерительного зонда, усилителя постоянного тока, аналого-импульсного преобразователя, генератора импульсов, исполнительного блока, импульсного блока питания, формирователя команд, коммутатора каналов, микроЭВМ, блока индикации и регистрации, постоянно-запоминающего устройства, перепрограммируемого постоянно-запоминающего устройства, мультиплексора. Недостатками известных способа и устройства является узкий диапазон измеряемых значений ТФХ при одном эталоне. Для расширения диапазона с заданной точностью необходимо использовать набор эталонных материалов, а это увеличивает длительность эксперимента. Недостатками данного устройства являются низкая информативность, обусловленная вводом информации путем имитации контактуры, низкое быстродействие за счет последовательного ввода информации по трем декадам и программной нормировки регистрируемой информации, низкая гибкость из-за использования электромеханического коммутатора, выполняющего роль ЦАП. Целью изобретения является повышение диапазона и точности измерения теплофизических свойств материалов. Поставленная цель достигается тем, что в способе определения теплофизических характеристик, включающем воздействие тепловыми импульсами от линейного источника на плоскую поверхность исследуемого и эталонного образцов, измерение избыточных температур в моменты подачи тепловых импульсов в точках, расположенных на фиксированных расстояниях от линии нагрева на поверхности образцов, в отличие от прототипа, к измеренным температурам приближают с минимальной погрешностью рассчитанные значения температур за счет программного изменения теплофизических характеристик, по идентифицированным параметрам теплофизических характеристик образцов и действительным значениям теплофизических характеристик эталона находят искомые характеристики; устройстве, содержащем последовательно включенные демультиплексор, управляемый блок питания, измерительный зонд, усилитель постоянного тока, аналого-импульсный преобразователь, первый программируемый таймер, вход/выход данных которого объединен по одноименной шине со входами/выходами второго программируемого таймера и микроЭВМ, в отличие от прототипа дополнительно введены регистр и селектор адреса, выходная шина которого подключена к адресным входам демультиплексора, первого и второго программируемых таймеров и регистра, соединенного первым и вторым входами соответственно с синхронизирующим входом и выходом первого программируемого таймера, управляющий вход которого объединен одноименной шиной с соответствующими входами второго программируемого таймера, демультиплексора, селектора адреса регистра и выходом микроЭВМ, адресный выход последней через одноименную шину связан с соответствующим входом селектора адреса, а вход/выход данных микроЭВМ подключен через одноименную шину к соответствующим выходу регистра и входу демультиплексора, соединяющего выход второго программируемого таймера с входом синхронизации первого программируемого таймера. Сущность способа заключается в следующем: воздействуют тепловыми импульсами с периодом












где
k - количество измеренных температур

Теплофизические характеристики




где n - количество тепловых импульсов за время tj= j

t0 - период измерения температуры, c. Приближение осуществляют по минимуму погрешности Eps:

включающему относительную погрешность

и математическое ожидание

где k - количество измеренных температур

В результате находятся значения измеренных теплофизических характеристик исследуемого образца

Так как измерения температур эталона





Решение систем уравнений приводит к соотношениям

т. е. отношения действительных и измеренных значений равны, откуда следует расчетное соотношение для искомых характеристик {a,


Предложенный способ реализован устройством в виде измерительно-вычислительной системы (ИВС) для определения ТФХ твердых материалов импульсными методами. Структурная схема ИВС (фиг. 2) состоит из измерительного зонда (ИЗ) 1, усилителя постоянного тока (УПТ) 2, аналого-импульсного преобразователя (АИП) 3, управляемого блока питания (УБП) 4, регистра 5, первого программируемого таймера (ПТ1) 6, демультиплексора (ДМ) 7, селектора адреса (СА) 8, микроЭВМ 9 и второго программируемого таймера (ПТ2) 10. МикроЭВМ 9 представляет собой вычислитель, построенный на базе кодоимпульсного микропроцессора с трехшинной архитектурой, включающей шины адреса 11, данных 12 и управления 13. МикроЭВМ 9 служит для программного управления блоками ИВС, обработки результатов эксперимента по математической модели, расчета ТФХ и программно-управляемой калибровки. Программируемые таймеры 6 и 10 являются многофункциональными программно-управляемыми счетчиками в интегральном исполнении. ПТ1 6 преобразует входную частоту в код измерения. ПТ2 10 формирует временные интервалы, определяющие длительность измерения














т.е. в предлагаемых решениях диапазон расширяется в 2n раз. Эффективность по точности. Измерения проводятся в поддиапазоне d0 диапазона d. Для контроля известными методами с заданной погрешностью


а для предлагаемого решения

Эффективность по точности


Следовательно, предлагаемое техническое решение обеспечивает точность измерения в 2n раз выше, чем прототип. Измерения проводились на следующих материалах: полиметилметакрилат (ПММ) (табл. 1), фторопласт ФТ-4 (табл. 2), кварц ТФ (табл. 3), пенопласт рипор (НК) (табл. 4). Мощность теплового импульса 5 Вт от линейного источника диаметром 0,1 мм из хромели, точечные термопары хромель-капель диаметром 0,1 мм располагаются на расстоянии 1,5 мм от линейного нагревателя, периоды подачи тепловых импульсов


Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3