Устройство обработки сигналов адаптивной антенной решетки
Изобретение относится к антенной технике и может быть использовано для адаптации радиотехнических сигналов с антенными решетками к помеховой обстановке, например в системах радиосвязи и радиолокации. Технический результат заключается в обеспечение возможности вычисления матрицы взаимной корреляции сигналов и помех. Решение поставленной задачи достигается введением в известное устройство обработки сигналов адаптивной антенной решетки генератора ортогональных возмущающих последовательностей коррелятора и устройства синхронизации, а также выполнением имеющегося в известном устройстве сумматора трехвходовым. Выход дополнительного генератора ортогональных возмущающих последовательностей подсоединен к дополнительному входу сумматора и к одному из входов коррелятора, выход известного устройства обработки подсоединен ко второму входу коррелятора. Длительность импульса введенного генератора ортогональных возмущающих последовательностей равна периоду возмущающих последовательностей генератора, имеющегося в известном устройстве. Устройство синхронизации обеспечивает синхронную работу обоих генераторов. 2 ил.
Изобретение относится к радиотехнике, в частности к антенной технике, и может быть использовано в системах передачи информации для адаптации к пространственной помеховой обстановке.
Известно, что оптимальное состояние вектора весовых коэффициентов Wопт адаптивной антенной решетки, обеспечивающее наибольшее отношение полезного сигнала к смеси помех и шумов, определяется по формуле Wопт = R-1Wo, (1) где Wo - начальное состояние вектора весовых коэффициентов; R - корреляционная матрица сигналов и помех, определенная в начальном состоянии вектора весовых коэффициентов; R-1 - обращенная матрица. Таким образом, зная матрицу R можно сразу же установить вектор весовых коэффициентов в оптимальное состояние. Корреляционная матрица R вычисляется по формуле R = XX+, (2) где X - вектор входных сигналов и помех антенной решетки; X+ - эрмитово сопряженный вектор. В соответствии с выражением (2) для нахождения матрицы необходимо в каждом элементе антенной решетки отделить часть энергии сигнала и произвести перемножение и интегрирование (корреляционную обработку) всех полученных сигналов. При N-элементной решетке для этого требуется N2 каналов с высочайшей степенью идентичности их амплитудных, частотных, фазовых и временных характеристик, а также коррелятор с соответствующим числом входов, работающий на высокой несущей частоте сигнала. В ближайшей перспективе при реальных значениях N эта задача технически не разрешима. В связи с изложенным в настоящее время формула (1) используется только для теоретического анализа. В связи с невозможностью вычисления матрицы R отсутствуют практические конструкции, напрямую реализующие данный алгоритм. Наиболее близким по технической сущности к заявляемому устройству является устройство обработки сигналов адаптивной антенной решетки, описанное в [2] . Данное устройство предназначено для вычисления оценки градиента мощности выходного сигнала адаптивной антенной решетки. Полученная оценка градиента в дальнейшем может использоваться для формирования последовательности весовых коэффициентов, сходящейся к оптимальной. Упрощенная функциональная схема прототипа представлена на фиг. 1. Устройство содержит непосредственно N-элементную решетку антенных элементов 1, устройство вычисления (определения) градиента мощности выходного сигнала антенной решетки 2, генератор ортогональных возмущающих последовательностей 3, двухвходовый сумматор 4 (под входом подразумевается совокупность N каналов для подачи вектора N сигналов от одного источника), весовые коэффициенты антенной решетки 5, имеющие выходы, сигналы на которых соответствуют текущим состояниям весовых коэффициентов. Вектор входных сигналов X антенной решетки 1 поступает на один из входов устройства вычисления градиента мощности 2. На другой вход устройства вычисления градиента 2 поступают сигналы возмущающих последовательностей с генератора ортогональных возмущающих последовательностей 3. Формируемые этим генератором последовательности как обычно должны удовлетворять условиям центрированности и ортогональности 1-го порядка. Те же самые возмущающие последовательности поступают на один из входов сумматора 4. На другой вход сумматора поступают сигналы, характеризующие состояния весовых коэффициентов (сигналы состояний). С выхода сумматора 4 возмущенные сигналы состояний поступают на третий вход устройства вычисления градиентa мощности 2. На выходе этого устройства формируется оценка градиента мощности выходного сигнала антенной решетки (на фиг. 1 обозначена как

1 - решетка антенных элементов;
2 - устройство вычисления градиента мощности выходного сигнала антенной решетки;
3 - первый генератор ортогональных возмущающих последовательностей;
4 - сумматор;
5 - весовые коэффициенты антенной решетки с выходами сигналов состояния;
6 - второй генератор ортогональных возмущающих последовательностей;
7 - коррелятор;
8 - устройство синхронизации. Принцип работы устройства поясняется следующими соображениями. Рассмотрим выражение

где
gradw+P(i) - возмущенный градиент мощности выходного сигнала антенной решетки, т. е. градиент мощности выходного сигнала, вычисленный при дополнительно возмущенных весовых коэффициентах, когда дополнительное возмущение произведено i-ми элементами ортогональных возмущающих последовательностей;


N - число каналов (весовых коэффициентов, элементов) антенной решетки;
+ - знак эрмитова сопряжения. Как известно (см., напр., [2])
grad P = 2RW. (4)
Тогда

Подставим соотношение (5) в (3) и выполним преобразования:

Так как возмущения


где
I - единичная матрица, то

и окончательно

Таким образом, выражения (3) и (9) представляют собой корреляционную матрицу помех и шумов R. Схема, изображенная на фиг. 2, реализует данные соотношения. Устройство обработки сигналов работает следующим образом. Сигнал X с решетки антенных элементов 1 поступает на устройство вычисления градиента мощности выходного сигнала 2. На это же устройство поступают опорные возмущающие последовательности с генератора возмущающих последовательностей 3. Эти же последовательности поступают на один из входов сумматора 4, на другой вход которого поступают сигналы состояний с весовых коэффициентов антенной решетки 5. На третий вход сумматора 4 поступают возмущающие последовательности с генератора возмущающих последовательностей 6. Одновременно эти же возмущающие последовательности в качестве опорных поступают на соответствующий вход коррелятора 7. Если бы на сумматор 4 не поступали возмущающие последовательности с генератора 6, то на выходе устройства вычисления градиента 2 формировался бы градиент мощности выходного сигнала - точно так же, как это имеет место в прототипе. Однако в заявленном устройстве данный градиент вычисляется при дополнительном возмущении весовых коэффициентов. Это возмущение должно быть неизменным в течение всего цикла вычисления градиента. При вычислении следующего значения градиента возмущение должно быть другим, но опять-таки в течение всего цикла вычисления градиента. Поэтому длительность импульса генератора возмущающих последовательностей 6 должна быть равна периоду возмущающих последовательностей генератора 3, а начала их должны быть синхронизированы. Синхронизация осуществляется с помощью устройства синхронизации 8, синхроимпульсы с которого поступают на синхровходы генератора 3 и 6. При этом обеспечивается одновременность начала периода последовательностей генератора 3 и начала каждого импульса последовательностей генератора 6. Таким образом, на выходе устройствa вычисления градиента формируется возмущенный вектор градиента мощности выходного сигнала gradw+P(i). Он поступает на соответствующий вход коррелятора 7. В корреляторе 7 происходит перемножение вектора градиента на вектор опорной возмущающей последовательности с последующим усреднением, т.е. вычисляются элементы корреляционной матрицы сигналов и помех R - в полном соответствии с формулой (9). Если бы устройство градиента 2 формировало точные значения градиента, то на выходе коррелятора в соответствии с изложенным была бы получена истинная корреляционная матрицa R. Однако устройство 2 по своему принципу действия формирует оценку градиента (точно так же, как и в прототипе). В этой связи на выходе коррелятора формируется оценка корреляционной матрицы

1. Монзинго Р.А., Миллер Т.У. Адаптивные антенные решетки.- М.: Радио и связь, 1986. 2. Cantoni A. Application of orthogonal perturbation sequences to adaptive beamforming.-IEEE Trans., v. AP-28, 1980, N 2, p. 191-202. Fig. 2 p. 193 - прототип.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2