Комплекс бортового оборудования летательного аппарата
Используется в пилотируемых летательных аппаратах - вертолетах и самолетах фронтовой авиации. Комплекс бортового оборудования содержит взаимосвязанные навигационную систему, систему задания исходных данных, прицельную систему, систему управления летательным аппаратом, систему управления средствами поражения, систему индикации, устройство коррекции параметров движения, устройство формирования параметров движения, формирующее в режиме локации наземных неподвижных целей информационные сигналы режима оптимальной коррекции навигационных и прицельных параметров, и обеспечивает повышение точности навигации, управления и индикации, повышение точности применения средств поражения и, как следствие этого, повышение боевой эффективности оборудованных предлагаемым комплексом бортового оборудования, летательных аппаратов, особенно вертолетов и самолетов фронтового назначения. 3 ил.
Изобретение относится к области авиастроения, в частности к комплексам бортового оборудования, обеспечивающего навигацию, выполнение прицельных задач и пуска средств поражения, индикацию и управление летательных аппаратов, особенно вертолетов и самолетов фронтового назначения.
Из известных аналогов наиболее близким по технической сущности является выбираемый в качестве прототипа комплекс бортового оборудования, описание которого приведено в книге [1] Гришутина А.Г. Лекции по авиационным прицельным системам стрельбы.- Киев: КВВАИУ, 1980 г., стр. 355-385. Данный комплекс содержит навигационную систему, прицельную систему, устройство коррекции параметров движения, систему управления средствами поражения, систему индикации и систему задания исходных данных. Навигационные параметры, измеряемые навигационной системой с погрешностями, являющимися медленно меняющимися процессами (см. книгу [2] Помыкаева И. И. Навигационные приборы и системы.- М.: Машиностроение, 1983 г. стр. 323-343). В зависимости от типов корректирующих средств погрешности навигационной системы по курсу составляют 0,5-3o, а погрешности по координатам местоположения находятся в пределах от нескольких десятков метров до нескольких километров. Прицельные параметры, например, координаты летательного аппарата относительно цели, измеряются прицельной системой с погрешностями, являющимися обычно флюктуационными быстро меняющимися центрированными процессами; в зависимости от типов локационных средств (см. книгу [3] Малашина М.С. и др. Основы проектирования лазерных локационных систем.- М.: Высшая школа, 1983 г. стр. 129) погрешности относительных координат могут находиться в пределах от единиц метров до нескольких десятков метров. Наличие вышеуказанных погрешностей является недостатком прототипа. Технический результат, достигаемый при использовании предлагаемого технического решения, - повышение точности работы комплекса и как следствие этого повышение эффективности применения летательных аппаратов. Достигается этот результат тем, что в состав комплекса бортового оборудования, содержащего взаимосвязанные навигационную систему, устройство коррекции параметров движения, прицельную систему, систему задания исходных данных, систему управления летательным аппаратом, систему индикации, систему управления средствами поражения, дополнительно введено устройство формирования параметров движения, формирующее параметры движения и функции их погрешностей для оптимальной коррекции в устройстве коррекции параметров движения, на основе параметров, измеряемых навигационной и прицельной системами в режимах одновременной локации наземных неподвижных целей с известными координатами, при этом устройство формирования параметров движения содержит блок ввода-вывода, блок преобразования координат, блок разности, блок деления, блок умножения, блок формирования арктангенса и блок суммирования, причем первый и второй входы устройства формирования параметров движения являются соответственно первым и вторым входами блока ввода-вывода, на третий - седьмой входы которого подключены соответственно первый выход блока деления, выход блока суммирования, первый, второй и третий выходы блока умножения; выходом устройства формирования параметров движения является первый выход блока ввода-вывода, второй - седьмой выходы которого подключены соответственно к первому входу блока деления, первому - пятому входам блока преобразования координат, третий выход блока ввода-вывода подключен также ко второму входу блока деления, на третий вход которого подключен первый выход блока преобразования координат, второй - девятый выходы которого подключены соответственно к первому - восьмому входам блока разности, первый и второй выходы которого подключены соответственно к четвертому и пятому входам блока деления, четвертый выход блока ввода-вывода подключен также к первому входу блока умножения, на второй, третий и четвертый входы которого подключены соответственно третий и четвертый выходы блока разности и второй выход блока деления, третий выход которого подключен ко входу блока формирования арктангенса, выход которого подключен к первому входу блока суммирования, на второй вход которого подключен седьмой выход блока ввода-вывода. На фиг. 1 представлена блок-схема предлагаемого комплекса бортового оборудования, содержащего: 1 - навигационная система НС, 2 - система задания исходных данных СИД, 3 - прицельная система ПС, 4 - система управления летательным аппаратом СУЛА, 5 - система индикации СИ, 6 - система управления средствами поражения СУСП, 7 - устройство формирования параметров движения УФПД, 8 - устройство коррекции параметров движения УКПД. На фиг. 2 представлена блок-схема УФПД7, содержащего 9 - блок ввода-вывода БВВ, 10 - блок преобразования координат БПК, 11 - блок разности БР, 12 - блок деления БД, 13 - блок умножения БУ, 14 - блок формирования арктангенса БФА, 15 - блок суммирования БС. На фиг. 3 представлена блок-схема УКПД8 содержащего 16 - блок ввода-вывода БВВ, 17 - блок разности БР, 18 - блок умножения БУ, 19 - блок суммирующих интеграторов БСИ, 20 - блок формирования коэффициентов коррекции БФКК. Связи комплекса выполнены по однопроводным линиям, например, последовательного кода или мультиплексного информационного обмена. Комплекс работает следующим образом. С выхода СИД2 поступают юстировочные характеристики и исходные данные для всех систем - координаты целей и ориентиров для НС1 и ПС3, баллистические характеристики средств поражения для ПС3, номенклатура и количество средств поражения для СУСП6, балансировочные характеристики и величины ограничений сигналов управления для СУЛА4. Примеры технического исполнения СИД2 приведены, например, в книге [4] Джанджгавы Г.И. и др. Основы навигации по географическим полям.- М.: Наука, 1985 г. Выход СИД2 подключен к первым входам НС1, ПС3, СУЛА4, СУСП6, УФПД7, УКПД8. В НС1 формируются навигационные параметры: координаты местоположения, углы и составляющие скорости движения летательного аппарата с учетом данных, поступивших по первому входу с СИД2 и по второму входу с ПС3. С выхода НС1 навигационные данные поступают на вторые входы ПС3, СУЛА4, СИ5, УКПД8. Примеры технического выполнения НС1 приведены в [2]. В ПС3 с учетом данных, поступивших по первому входу с выхода СИД2 и по второму входу с выхода НС1, формируются прицельные параметры - полярные и прямоугольные координаты целей и ориентиров относительно летательного аппарата, разовые команды на подготовку и пуск средств поражения, заданные сигналы управления летательным аппаратом, которые с выхода ПС 3 поступают на вторые входы СУСП6, УФПД7, НС2 и на третьи входы СУЛА4, СИ5. Примеры технического выполнения ПС3 приведены в [1]. В СУЛА4 по заданным сигналам, поступившим на первый, второй и третий входы, формируются сигналы автоматического управления и сигналы индикации экипажу для осуществления ручного, полуавтоматического и автоматического управления летательным аппаратом, которые с выхода СУЛА4 поступают на первый вход СИ5 и на органы управления летательного аппарата. Примеры технического выполнения СУЛА4 приведены, например, в книге [5] Боднера В.А. Теория автоматического управления полетом.- М.: Наука, 1964 г. В СУСП6 по сигналам, поступившим на первый и второй входы формируются сигналы индикации экипажу по командам для ручного пуска средств поражения, которые с выхода СУСП6 поступают на четвертый вход СИ5 и на входы средств поражения для обеспечения их подготовки и автоматического пуска. Примеры технического выполнения СУСП6 приведены в [1]. В СИ5 по сигналам, поступившим на первый, второй, третий и четвертый входы, осуществляется индикация навигационных, пилотажных, прицельных данных для осуществления экипажем навигации, управления, пуска средств поражения. Примеры технического выполнения СИ 5 приведены в книге [6] Костюка В.И. Системы отображения информации и инженерная психология.- Киев: Вища школа, 1977 г. При фиксации посредством ПС3 двух наземных неподвижных целей (одна из них может быть ориентиром) с известными (запрограммированными) координатами, введенными перед полетом или в полете в СИД2, полярные координаты этих целей D1, D2,




















F3 = D2cos(




F4 = D2sin(




Сигналы F1 и F2 с первого и второго выходов БР11 поступают соответственно на четвертый и пятый входы БД12. Сигналы F3 и F4 с третьего и четвертого выходов БР11 поступают соответственно на второй и третий входы БУ13. БД12 выполнен на трех элементах деления, на которых формируются сигналы








































(здесь







которые с первого - (n+2)-го выходов БУ18 поступают на первый - (n+2)-й входы БСИ19. БСИ19 выполнен на (n+2)-х суммирующих интеграторах, на которых формируются сигналы оценок погрешностей

которые с первого - пятого выходов БСИ19 поступают на девятый - тринадцатый входы БР17, в котором формируются откорректированные сигналы

Например, при





(здесь
D




x0к=xcк-x01; y0к=ycк-y01, тогда, например, при b0=const, c0=const, b1=.. . = bm= 0, c1= . ..=cm=0,



Откуда следует, что



Формула изобретения
устройство формирования параметров движения содержит блок ввода-вывода, блок преобразования координат, блок разности, блок деления, блок умножения, блок формирования арктангенса и блок суммирования, причем первый и второй входы устройства формирования параметров движения являются соответственно первым и вторым входами блока ввода-вывода, на третий - седьмой входы которого подключены соответственно первый выход блока деления, выход блока суммирования, первый, второй и третий выходы блока умножения, выходом устройства формирования параметров движения является первый выход блока ввода-вывода, второй - седьмой выходы которого подключены соответственно к первому входу блока деления, первому - пятому входам блока преобразования координат, третий выход блока ввода-вывода подключен также к второму входу блока деления, на третий вход которого подключен первый выход блока преобразования координат, второй - девятый выходы которого подключены соответственно к первому - восьмому входам блока разности, первый и второй выходы которого подключены соответственно к четвертому и пятому входам блока деления, четвертый выход блока ввода-вывода подключен также к первому входу блока умножения, на второй, третий и четвертый входы которого подключены соответственно третий и четвертый выходы блока разности и второй выход блока деления, третий выход которого подключен к входу блока формирования арктангенса, выход которого подключен к первому входу блока суммирования, на второй вход которого подключен седьмой выход блока ввода-вывода.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3