Контейнер для облучения делящихся материалов
Использование: изобретение относится к технике и оборудованию для получения изотопов из делящихся материалов, в частности для получения молибдена-99 и ксенона-133, применяемых в современной медицинской диагностике. Сущность изобретения: контейнер для облучения делящихся материалов содержит корпус с двойными стенками и торцевыми заглушками, кольцевые газовые объемы, контактный материал, мишень в виде набора шариков, равномерно и упорядоченно размещенных монослоем в кольцевом зазоре корпуса, а кольцевые ряды шариков мишени по длине активной зоны контейнера выполнены плотно упакованными. Технический результат заключается в повышении эффективности улавливания летучих радионуклидов и снижения расхода химических реагентов при извлечении молибдена во время разделки контейнера. 1 з.п.ф-лы, 2 ил.
Изобретение относится к технике и оборудованию для получения изотопов из делящихся материалов, в частности, для получения молибдена-99 и ксенона-133, применяемых в современной диагностике.
Известен контейнер для облучения делящихся материалов [1], содержащий корпус и делящуюся мишень, размещенную в корпусе. Конструкция контейнера представляет собой металлический корпус-чехол, внутрь которого помещен металлический разъемный вкладыш. Внутри вкладыша размещена кварцевая ампула с исходным материалом. После сборки крепление деталей осуществляется с помощью сварки. Этот контейнер имеет ряд существенных недостатков, основными из которых являются: неудовлетворительный теплосъем и, как следствие, ухудшение качестве продукта из-за перегрева и спекания делящегося материала; повышение давления внутри упаковки, которое может привести к ее разгерметизации и выбросу газов, осколков деления в окружающую среду; маленькая объемная загрузка (единичная на один котнейнер-упаковку) делящегося исходного материала. Известен контейнер для облучения делящихся материалов, описанный в [2]. Контейнер имеет цилиндрический корпус, закрываемый герметично пробкой. Внутри корпуса находится мишень из урана-235. Контейнер подвергают облучению в нейтронном поле ядерного реактора. В результате облучения образуется осколочный молибден-99, который в последующем извлекают и направляют для зарядки генераторов технеция-99м. Основными недостатками контейнера для облучения делящихся материалов являются: - неравномерное распределение делящегося материала по объему, что ведет к местному нагреву контейнера и в дальнейшем к его разгерметизации; - плохие условия теплосъема, что ведет к перегреву мишени; - накопление несвязанных летучих радионуклидов, например йода, внутри контейнера, которые при разделке ухудшают экологическую обстановку. Наиболее близким техническим решением является контейнер для облучения делящихся материалов [3]. Этот контейнер для облучения делящихся материалов взят в качестве прототипа. Контейнер для облучения делящихся материалов имеет корпус, содержащий двойные кольцевые стtнки с торцевым заглушкам, облучаемый делящийся материал, например уран-235, равномерно распределенный в объеме матрицы. Матрица выполнена в виде втулки и размещена в кольцевом зазоре между станками. Втулка установлена с зазорами по отношению к стенкам кольцевой полости и торцевыми заглушками. Зазоры заполнены контактным материалом, связывающим летучие радионуклиды. По торцам корпуса между торцевыми заглушками и контактным материалом выполнены кольцевые полости. В качестве контактного материала в зазорах контейнера выбран магний. В качестве материала матрицы втулки выбран оксид магния. Делящийся материал в виде порошка равномерно перемешивают с порошком матрицы из оксида магния, а затем проводят холодное прессование этих смесей с получением втулки. В процессе облучения уран-235 делится с образованием осколков деления, в том числе и изотопов йода. Магний - контактный материал, химически связывает йод и во время разделки (переработки) такого облученного контейнера не происходит выброса летучих продуктов деления урана-235. Основными недостатками контейнера для облучения делящихся материалов являются: - неравномерное распределения делящегося материала по объему втулки, что ведет к местному перегреву контейнера; - накопление несвязанных летучих ралионуклидов, например йода, внутри пористой втулки. Летучие радионуклиды при разделке контейнера вылетают из объема втулки и ухудшают экологическую обстановку; - большой объем втулки (т.к. выполнить втулку толщиной стенки менее 2 мм холодным прессованием практически невозможно, т.к. она становится хрупкой и при механической тряске рассыпается), который ведет к перерасходу компонентов при извлечении нужных радионуклидов, например, молибдена-99. Целью изобретения является повышение эффективности улавливания летучих радиодуклидов и снижение расхода химических реагентов при извлечении молибдена-99 во время разделки контейнера. Для достижения указанного технического результата предлагается контейнер для облучения делящихся материалов, который содержит корпус с двойными стенками, торцевыми заглушками и кольцевыми полостями, контактный материал, мишень, содержащую делящийся изотоп, например уран-235, равномерно размещенный в матрице, выполненной в виде набора шариков, равномерно размещенных монослоем в кольцевом зазоре корпуса. Диаметр шарика выбирают из выражения:dш



где
dш - диаметр шарика;


чертежом (фиг. 1), на котором представлен общий вид контейнера для облучения делящихся материалов. Контейнер содержит наружную оболочку 1, внутреннюю оболочку 2, торцевые заглушки 3, шарики 4, контактный материал 5 и кольцевые полости 6;
чертежом (фиг. 2), на котором показана развертка на плоскости части кольцевого зазора, к котором кольцевые ряды шариков по длине активной зоны выполнены плотно упакованными. Контейнер для облучения делящихся материалов работает следующим образом. Контейнер загружают в канал ядерного реактора и производят облучение. В результате, делящийся изотоп, уран-235, производит осколочный молибден-99 и одновременно образуются летучие соединения йода, которые из шариков 4 поступают к контактному материалу - магнию 5. Происходит химическое взаимодействие йода с магнием. В результате разделки такого контейнера в горячей камере не происходит выброса йода, т.к. он находится в химически связанном состоянии с магнием. При разделке один торец контейнера, например нижний, в районе газового кольцевого объема 6 отрезают с помощью наждачного круга (смотри на фиг. 1 сечение А-А). Затем контейнер помещают в электрическую печь так, чтобы открытый торец контейнера находился внизу. Под открытым торцом находится сетчатый фильтр. При нагреве контейнера выше точки плавления контактного материала (tпл магния 649oC) магний вместе с шариками 4 выходят из кольцевого зазора и попадают на сетчатый фильтр. Магний протекает через сетку фильтра в поддон, а шарики передаются на дальнейшую переработку. В прототипе [3] втулку практически невозможно извлечь из кольцевого зазора, поэтому для переработки контейнера-прототипа требуется больше химических реагентов, чем для переработки одних шариков (без магния) и, кроме этого, объем шариков меньше, чем объем втулки при одном и том же кольцевом зазоре. Использование предлагаемого изобретения позволит создать контейнер для облучения делящихся материалов с равномерно расположенным по объему делящимся материалом в виде монослоя плотно упакованных шариков, улучшить условия теплосъема, эффективнее локализовать летучие радионуклиды, повысить безопасность облучения контейнера и снизить расход химических реагентов при извлечении во время разделки молибдена-99. Источники информации. 1. Левин В.И. и др. Регламент на выделение молибдена-99 без носителя из продуктов деления урана. Отчет института биофизики Министерства здравоохранения СССР, М., 1976. 2. Патент ГДР N 114715, МПК G 21 G 1/00. Контейнер для облучения делящихся материалов. Опубл. 1975 г. 3. Заявка N 95106367/25 от. 25.04.95. Контейнер для облучения делящихся материалов. Положительное решение о выдаче патента на изобретение от 26.04.96 г.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2