Многофазный преобразователь
Преобразователь предназначен для преобразовательных подстанций для электропередач и вставок постоянного тока, электрофицированных железных дорог, электрометаллургической и химической промышленности. Сущность изобретения: у многофазного преобразователя, состоящего из двух одинаковых двенадцатифазных преобразователей 1 и 2 с управляемыми вентилями (запираемыми или незапираемыми), к вентильным обмоткам трансформаторов подключены батареи шунтовых конденсаторов, вентили преобразователей 1 и 2 отпираются с углами регулирования соответственно 1 =
- 7,5o и
2 =
+ 7,5o. Благодаря этим особенностям, сетевой ток многофазного преобразователя имеет малое содержание высших гармоник, при котором его коэффициент искажения синусоидальности меньше одного процента; не требуется установка фильтров на стороне трехфазного напряжения. 1 ил.
Изобретение относится к преобразовательной технике и может быть использовано на преобразовательных подстанциях для электропередач и вставок постоянного тока, электрифицированных железных дорог, электрометаллургической и химической промышленности, где необходимо обеспечить малое содержание высших гармоник в сетевом токе преобразователя на стороне трехфазного напряжения.
Известны многофазные преобразователи, имеющие фазность 24 и выше, с малым содержанием высших гармоник в сетевом токе. К ним относятся 24-фазные преобразователи [1] и [2] и 30-фазный преобразователь [3]. Недостатком многофазного преобразователя [1] является сложность выполнения вентильных обмоток трансформатора, что практически исключает его применение для подстанций большой мощности и высокого напряжения. Недостатком многофазного преобразователя [2] является применение двух добавочных фазоповоротных устройств, включенных между шинами трехфазного напряжения и сетевыми обмотками двух трансформаторов. Из известных монофазных преобразователей наиболее близким к предлагаемому является многофазный преобразователь [3], содержащий одинаковые преобразователи, включенные на стороне трехфазного напряжения параллельно, а на стороне выпрямленного напряжения последовательно или параллельно через уравнительный реактор. Недостатком этого многофазного преобразователя, принятого за прототип, является нестандартное выполнение вентильных обмоток трансформаторов с числом фаз 6k















Таким образом, относительные значения этих гармоник уменьшены в сетевом токе многофазного преобразователя в 7,6 раз. Существенно, что такое уменьшение относится к 11-й и 13-й гармоникам, имеющим наибольшую величину во входных токах преобразователей 1 и 2. Преобразователи 1 и 2 могут быть выполнены по любой схеме двенадцатифазного преобразователя. Приводим ниже описание предлагаемого многофазного преобразователя с конкретным выполнением преобразователей 1 и 2 по схеме двенадцатифазного преобразователя, в состав которого входят два вентильных моста и трансформатор с двумя вентильными обмотками, соединенными звездой и треугольником. На чертеже приведена схема предлагаемого многофазного преобразователя с одним из возможных конкретных выполнений входящих в его состав двух одинаковых двенадцатифазных преобразователей. Двенадцатифазный преобразователь 1 содержит два трехфазных моста 3, трехфазный трехобмоточный трансформатор 4, две батареи шунтовых конденсаторов 5 и устройства управления, определяющие угол регулирования вентилей обоих мостов. Мосты 3 содержат управляемые вентили; они могут быть незапираемые, например тиристорные, или запираемые, например из последовательно соединенных запираемых тиристоров. Трансформатор 4 имеет сетевую обмотку и две вентильные обмотки. Одна вентильная обмотка соединена треугольником, а другая - звездой. Линейные напряжения и мощности обеих вентильных обмоток одинаковые. К каждой вентильной обмотке трансформатора 4 подключена батарея шунтовых конденсаторов (БШК) 5, фазы которой могут быть соединены звездой или треугольником. Емкость фазы БШК выбирается такой, чтобы порядок собственной частоты контуров, образованных шунтовыми конденсаторами и вентильной обмоткой, отличался на 1 - 2 порядка от ближайшего порядка высших гармоник у фазного тока моста, а именно от n = 6k



и работу преобразователя 2 с углом регулирования


где





P = 2cos7,5oqk1EIdcos

Q = 2cos7,5oqk1EIdsin

где



L = L2 + 2K21L1,
где k1 = W2/W1 - коэффициент трансформации вентильной обмотки, соединенной звездой;
C - емкость фазы БШК в случае соединения фаз БШК звездой;
L1 - индуктивность К3 сетевой обмотки;
L2 - индуктивность К3 вентильной обмотки, соединенной звездой;
E - фазное напряжение шин 6;
Id - постоянная составляющая тока двенадцатифазного преобразователя 1 (или 2) на стороне выпрямленного напряжения. Если вентили многофазного преобразователя запираемые, то угол может изменяться во всем диапазоне от 0 до 360o; возможна работа многофазного преобразователя выпрямителем и инвертном как с потреблением, так и с выдачей реактивной мощности, в частности при реактивной мощности, близкой к нулю. Если вентили многофазного преобразователя незапираемые, то угол





При реальных индуктивностях К3 трансформатора 4 параметр


при n = 11, 13, 23, 25, 35, 37 I*1(1) 3,74, 2,02, 0,31, 0,24, 0,084, 0,071 % соответственно. В фазном токе моста относительные значения высших гармоник равны 1/n (по отношению к первой гармонике). Поэтому относительное значение n-й высшей гармоники во входном токе двенадцатифазного преобразователя 1 (или 2) меньше относительного значения этой же гармоники в фазном токе моста в Р раз, где, как это следует из (6)

При

при n = 11, 13, 23, 25, 35, 37 Р = 2,4, 3,8, 14, 17, 34, 38 соответственно. Этот эффект - результат фильтрующего действия батарей шунтовых конденсаторов 5. Переходим к определению высших гармоник в сетевом токе i многофазного преобразователя, находим их значения по отношению к первой гармонике. При этом так же, как выше для входных токов преобразователей 1 и 2, не учитываем первую гармонику холостого хода преобразователя, когда вентили заперты, а токи обусловлены шунтовыми конденсаторами. Это приближение дает незначительное увеличение относительных значений высших гармоник. На основании выражений (3) и (6) получаем для высших гармоник сетевого тока, имеющих порядок n = (2k - 1) 12


Относительные значения I*n этих высших гармоник в сетевом токе меньше относительных значений I*1(n) тех же гармоник во входных токах двенадцатифазных преобразователей 1 и 2 в 1/tg 7,5o = 7,6 раз. Этот эффект - результат отпирания вентилей преобразователей 1 и 2 с углами регулирования, разность которых равна 15o. Для высших гармоник сетевого тока, имеющих порядок = 24k


при n = 11, 13, 23, 25, 35, 37, 47, 49 I*(n) = 0,49, 0,27, 0,31, 0,24, 0,011, 0,009, 0,0345, 0,030 % соответственно. При таком содержании высших гармоник коэффициент искажения синусоидальности сетевого тока

Для сравнения отметим, что коэффициент Kи, характеризующий относительную величину высших гармоник в сетевом токе, у обычных двенадцатифазных преобразователей равен 10 - 12%, а у двенадцатифазного преобразователя с шунтовыми конденсаторами - 4,3% [4]. Приведенные данные показывают, что задача изобретения выполнена: у предлагаемого многофазного преобразователя сетевой ток имеет малое содержание высших гармоник, при котором коэффициент искажения синусоидальности меньше 1%. Высшие гармоники сетевого тока настолько малы, что не требуется установка фильтров и в результате достигается положительный технико-экономический эффект. Источники информации
1. Шляпошников Б.М. Игнитронные выпрямители для тяговых подстанций железных дорог. - М.: Гос. транспортное ж/д из-во, 1947, с. 414. 2. Авторское свидетельство СССР N 961074, кл. H 02 M 7/12, 1982. 3. Авторское свидетельство СССР N 1228760, кл. H 02 M 7/12, 1984. 4. Поссе А.В. Результаты анализа 12-фазного самокоммутируемого преобразователя в установившихся режимах. - "Изв. РАН Энергетика", N 2, 1995, с. 43-51.
Формула изобретения







РИСУНКИ
Рисунок 1