Источник опорного напряжения
Изобретение относится к электронной технике, в частности к устройствам получения высокостабильного опорного напряжения. Новым в источнике опорного напряжения, содержащем усилитель постоянного тока на основе операционного усилителя, является то, что в схему введен диод на основе широкозонного полупроводника, биполярный транзистор, два токозадающих резистора, причем база транзистора соединена с диодом, эмиттер транзистора - с токозадающим сопротивлением и входом усилителя постоянного тока, выход усилителя постоянного тока соединен с коллектором транзистора и через второй токозадающий резистор со светодиодом и базой транзистора, вторые выводы светодиода и первого токозадающего резистора соединены с общим проводом схемы. 2 ил.
Изобретение относится к электронной технике, в частности к устройствам получения высокостабильного опорного напряжения.
Известны устройства получения опорного напряжения на основе опорных диодов - стабилитронов, но эти устройства требуют питания постоянным током, обладают повышенным коэффициентом шума, высоким температурным коэффициентом напряжения (ТКН). Так называемые "стабилитронные интегральные микросхемы" позволяют осуществить питание опорного диода практически постоянным током, но обладают повышенным шумом, высоким ТКН. Наиболее близким к предлагаемому изобретению являются стабилизаторы опорного напряжения с "напряжением запрещенной зоны". В основе работы лежит идея генерации напряжения с температурным коэффициентом, положительным и равным по величине отрицательному ТКН между базой и эмиттером биполярного транзистора (Uбэ). Недостатком такого рода схем является небольшая величина компенсирующего напряжения, а также работа транзистора в режиме микротоков, что ведет к повышению уровня помех. Из теории тонкого p-n-перехода следует, что напряжение на прямосмещенном эмиттерном переходе:




Если это напряжение сложить с Uбэ, то термокомпенсированное напряжение:

Отметим, что для получения термокомпенсированного напряжения необходимо выполнить операции вычитания, а затем сложения; причем точность снижается при выполнении нескольких операций. Кроме того, поскольку для выполнения компенсации используется операционный усилитель, то существенное влияние оказывает отношение температурного дрейфа к величине компенсирующего напряжения (этим параметром обусловлена относительно высокая погрешность компенсации)



где

e - заряд электрона;
k - постоянная Больцмана;
T - абсолютная температура;
A1 - некоторая величина, почти не зависящая от температуры;
S1 - крутизна температурной зависимости;
I01 - ток прямосмещенного p-n-перехода. Аналогичным выражением описывается напряжение на переходе база-эмиттер биполярного транзистора:

где

S2 - крутизна температурной зависимости напряжения на переходе база-эмиттер. Схема получения разностного напряжения показана на фиг.1. Это напряжение можно найти следующим образом:

Регулируя ток I01 или I02, можно добиться равенства S1 = S2; в этом случае наблюдается независимость разностного напряжения от температуры. В том случае, если в качестве p-n-перехода использован диод из фосфида галлия, а в качестве биполярного транзистора - кремниевый транзистор, то генерируемое схемой разностное напряжение составит:

Это напряжение усиливается с помощью операционного усилителя OA1 и является выходным напряжением источника. С целью повышения стабильности схемы выходное напряжение используется для питания каскада выделения разностного напряжения. Отметим, что, в отличие от схемы стабилизатора с "напряжением запрещенной зоны", в предлагаемой схеме OA1 усиливает напряжение порядка 1,1 В, в отличие от 60 мВ в схеме прототипа. По этой причине дрейф операционного усилителя оказывает меньшее влияние:

Кроме того, возможна компенсация дрейфа DA1 регулировкой тока I01 или I02. Были исследованы температурные зависимости прямого падения напряжения на p-n-переходе изготовленного из широкозонного полупроводника - фосфида галлия. Эти зависимости представлены на фиг. 2. Кривая 1 получена при прямом токе 0,1 мА, кривая 2 - при 0,5 мА, кривая 3 - при 1 мА. Как видно из фиг. 2 и формулы 1, полученные зависимости линейны в диапазоне температур от 450 до 650 К. Отметим, что крутизна линейной зависимости может быть подстроена изменением тока через светодиод. В нашем случае меняется от 2,88 мВ/К при тока 0,1 мА до 2,39 мВ/К при 1 мА. Нами были проведены исследования температурной стабильности схемы фиг. 1. Исследования проводились в температурном диапазоне от 0 до 100oC. При выходном напряжении 7 В и входном - от 10 до 30 В. Термостабильность схемы - на уровне лучших прецизионных стабилитронов. ТКН - порядка 5


Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2