Поглощающий сердечник органа регулирования атомного реактора
Изобретение относится к атомной технике и может быть использовано в органах регулирования атомных реакторов. Изобретение позволяет увеличить ресурс органов регулирования атомных реакторов при сохранении исходной эффективности поглощения, уменьшении скорости снижения эффективности, увеличении радиационной стойкости и теплопроводности поглощающего сердечника. С этой целью в сыпучий n, - поглотитель нейтронов поглощающего сердечника введен сыпучий n,
- поглотитель нейтронов с объемной долей 10 - 50%. В качестве n,
- поглотителя использован порошок карбида бора, а в качестве n,
- поглотителя - порошок или крупка титаната диспрозия (Dy2O3
TiO2), гафната диспрозия (nDy2O3
mHfO2) или их смеси. 3 з.п.ф-лы.
Изобретение относится к атомной технике и может быть использовано в органах регулирования атомных реакторов.
Как известно, для управления атомным реактором в его органах регулирования применяют поглощающие нейтроны материалы, к которым предъявляются следующие основные эксплуатационные требования, определяющие рабочий ресурс органов регулирования: высокая эффективность поглощения нейтронов, достаточная для выполнения функций управления, компенсации мощностных и температурных эффектов или остановки реактора: низкая скорость выгорания поглощающих изотопов для длительного сохранения высокой эффективности поглощения в процессе эксплуатации в реакторе; высокая стойкость к радиационным повреждениям, прежде всего, стабильность объема как при рабочих температурах эксплуатации, так и при перегревах; совместимость с контактирующими конструкционными материалами в рабочем диапазоне температур; коррозионная стойкость. Поглощающие материалы входят в виде сердечников в поглощающие элементы (пэлы) органов регулирования, для чего из них изготавливаются таблетки, блочки, стержни, кольца, порошки и т.д. в зависимости от конструкции пэлов. Известен поглощающий сердечник, изготовленный из металлического сплава 80% Ag-15% In-5%Cd, широко применяемый в пэлах органов регулирования реакторов PWR [B.E. Рэй Производство регулирующих стержней для ядерных реакторов//М., Атомиздат, 1965]. Основное его преимущество - наличие в одном материале трех компонентов с различной степенью поглощения тепловых и надтепловых нейтронов. Этим самым расширена область энергий поглощаемых нейтронов, что приводит к увеличению эффективности поглощения органов регулирования в целом. Сплав имеет низкую коррозионную стойкость, поэтому он либо заливается в защитную оболочку из нержавеющей стали, либо помещается в нее в виде блочков (таблеток). К основным недостаткам сплава следует отнести: низкую температуру плавления (около 800oC); распухание при длительном реакторном облучении, приводящее к деформации и разрушению защитной оболочки; снижение физической эффективности из-за быстрого выгорания кадмия; недостаточную физическую эффективность в жестком спектре нейтронов при использовании МОХ-топлива (смешанного уран-плутониевого оксидного топлива);накопление высокоактивных и долгоживущих радионуклидов Ag110m. Известен также поглощающий сердечник в виде порошка (крупки) титаната диспрозия (Dy2O3




- недостаточно высокая исходная физическая эффективность, которая на 20% ниже, чем у эталонного поглощающего материала - карбида бора;
- наличие только одного поглощающего компонента (Dy);
В качестве прототипа изобретения выбран поглощающий сердечник в виде порошка карбида бора (B4C), размещенного внутри защитной оболочки [В.Б.Пономаренко и др. Органы регулирования и СВП ядерных реакторов ВВЭР-1000 и пути их усовершенствования.// ВАНТ, Сер. Физика радиационных повреждений и радиационное материаловедение, вып. 2(62), 3(63), Харьков, 1994]. Преимущества такого поглощающего сердечника:
- высокая исходная физическая эффективность и возможность ее повышения путем обогащения по изотопу 10B;
- поглощение нейтронов в широкой области энергий - от тепловых до быстрых;
- высокая химическая стабильность и температура плавления (2450oC);
- низкая стоимость и большие запасы сырья. В настоящее время карбид бора широко применяется в качестве поглощающего материала в органах регулирования ядерных реакторов как в России (доля его использования на реакторах ВВЭР-1000 и РБМК-1000 составляет > 90%), так и за рубежом ( в различных странах от 40 до 80%), несмотря на ряд существенных недостатков, основными из которых являются:
- быстрый темп выгорания изотопа 10B и снижение эффективности поглощения;
- низкая радиационная стойкость из-за протекания ядерной реакции 10B+1n___

- несовместимость с нержавеющей сталью при температуре выше 450oC. Экспериментально обнаружено, что сердечник из порошка карбида бора, при эксплуатации пэлов в реакторе, в результате действия температуры, давления и накопления лития, преобразуется в газонепроницаемый монолит. Это наступает при выгораниях изотопа 10B выше 30%. В результате, образовавшийся гелий остается в месте наибольшего выгорания и может создавать под оболочкой значительные давления, превышающие 100 МПа. Дальнейшее выгорание сопровождается деформацией и разрушением оболочки. Целью предлагаемого изобретения является увеличение ресурса органов регулирования атомных реакторов при сохранении исходной эффективности, уменьшении скорости снижения эффективности, увеличении радиационной стойкости и теплопроводности. Для достижения этой цели в сердечник пэлов органов регулирования атомного реактора из сыпучего n,





1. предотвратить образование монолитного сердечника из исходного порошка при его облучении в реакторе, что способствует выходу гелия в газосборник и снижению деформации оболочки;
2. использовать в одном поглощающем сердечнике более одного поглощающего нейтроны компонента, что расширяет спектр поглощаемых нейтронов и повышает эффективность поглощения;
3. снизить скорость выгорания изотопа 10B за счет экранирования частиц B4C частицами n,

4. получить сердечник с эффективноcтью поглощения в исходном состоянии, близкой к эффективности карбида бора;
5. уменьшить количество образующегося гелия в поглощающем сердечнике;
6. повысить теплопроводность сердечника и соответственно снизить температуру в нем при облучении. Объемная доля n,




Формула изобретения









