Способ снижения в газовых выбросах концентрации бенз(а) пирена и других полициклических ароматических углеводородов
Использование: очистка газовых выбросов от органических соединений и, в частности, от полициклических ароматических углеводородов (ПАУ) на предприятиях металлургической, химической, нефтехимической, коксохимической, топливно-энергетической отраслей промышленности и в других отраслях народного хозяйства. В газовых выбросах, содержащих технологическую комбинацию ПАУ, в основном адсорбированных на пылевидной подложке, проводят фотоокисление путем облучения электрическим разрядом в интервале длин волн 340 - 410 нм со средней плотностью световой энергии 10-3 -3 х 10-1Дж/см2 за время обработки при рабочих температурах -20 - +80oС. Изобретение позволяет достигнуть снижения концентрации бенз(а)пирена (БП) и других ПАУ. В условиях промышленности газохода электролизного производства получено, что для уничтожения 1 г БП затрачивается 0,5 кВт ч электроэнергии. 1 табл.
Изобретение относится к способам очистки газовых выбросов от органических соединений, и, в частности, от полициклических ароматических углеводородов (ПАУ), и может быть использовано на предприятиях металлургической, химической, нефтехимической, коксохимической, топливно-энергетической отраслей промышленности и в других отраслях народного хозяйства.
Цель изобретения - достижение эффективного снижения концентрации бенз(а)пирена (БП) и других ПАУ в газовых выбросах, содержащих многокомпонентный состав ПАУ. Известен способ очистки газовых выбросов промышленных предприятий от ПАУ, основанный на термическом и каталитическом их разложении [1]. Недостатками такого способа являются необходимость подогрева и очистки от пыли газовых выбросов и использование дорогостоящих катализаторов. Известен также способ снижения концентрации БП и других ПАУ в результате фотоокисления [2]. ПАУ наносился на различные виды пылевидной подложки, которые присутствуют в технологических выбросах производств. Облучение проводилось ртутной лампой среднего давления. Спектральный диапазон излучения лежал в области 200-410 нм. Снижение концентрации БП и других ПАУ наблюдалось отдельно для каждого вида пыли (Al2O3, SiO2, летучая зола и сажа) с нанесенным на него в один слой полициклическим ароматическим углеводородом. Например, для БП, нанесенного на Al2O3 в результате фотоокисления достигнуто снижение концентрации в 2 раза при плотности световой энергии 9 Дж/см2. К недостаткам вышеуказанного способа снижения концентрации следует отнести то обстоятельство, что фотоокисление проводилось в отдельности для каждого ПАУ, адсорбированного на пылевидных подложках в монослое. Как известно, любые технологические и природные выбросы при температурах -20 - +80oC характеризуются комбинацией ПАУ, адсорбированных в виде многослойных покрытий на пылевидных подложках. Установлено, что свет в полосе возбуждения ПАУ проникает на глубину до нескольких тысяч слоев. При облучении комбинации ПАУ, адсорбированных в виде многослойных покрытий на пылевидной подложке широкополосным излучением 200-410 нм в условиях недостатка кислорода в нижних слоях возможны взаимные преобразования ПАУ, в частности наработка БП посредством фотокаталитических реакций за счет коротковолнового диапазона облучения, когда энергия фотона превышает энергию разрыва C-C или C-H связей. Целью предлагаемого изобретения является достижение эффективного снижения концентрации БП и других ПАУ в газовых выбросах, содержащих технологическую комбинацию ПАУ, адсорбированных на пылевидной подложке, путем облучения электрическим разрядом в диапазоне длин волн 340-410 нм со средней плотностью световой энергии 10-3 - 3







Формула изобретения
Способ снижения в газовых выбросах концентрации бенз(а)пирена и других полициклических ароматических углеводородов, преимущественно адсорбированных на пылевидной подложке, включающий их фотоокисление при облучении электрическим разрядом, отличающийся тем, что фотоокисление полициклических ароматических углеводородов в виде технологических комбинаций проводят облучением электрическим разрядом в интервале длин волн 340 - 410 нм со средней плотностью световой энергии 10-3 - 3
РИСУНКИ
Рисунок 1